Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tọa độ hóa bài toán hình không gian - Trần Duy Thúc

Tài liệu gồm 24 trang giới thiệu phương pháp tọa độ hóa bài toán hình không gian và các ví dụ minh họa có lời giải chi tiết. Ưu điểm của phương pháp: Khi ta chọn được tọa độ các điểm thì chỉ cần áp dụng các kiến thức hình giải tích như khoảng cách, góc, chứng minh vuông góc. Tuy nhiên, với một số em học sinh thì việc tính được tọa độ là vấn đề? Về nguyên tắc thì em có thể chọn gốc tọa độ nằm bất cứ chổ nào, nhưng chọn chổ nào thì việc tính tọa độ là thuận lợi nhất? Sai lầm của không ít người dẫn đến việc tính tọa độ các điểm phức tạp là cứ thấy chân đường cao của hình chóp là chọn làm gốc tọa độ. Trong một số trường hợp em chọn như vậy sẽ dẫn đến việc tính tọa độ khó khăn và dễ bị chán nản. Để thuận lợi cho việc tính tọa độ em nhớ nguyên tắc sau đây: [ads] + Vẽ hình thực của đa giác đáy ra bên cạnh. + Ưu tiên chọn gốc tọa độ là góc vuông của đa giác đáy chứ không phải là ưu tiên chân đường cao. Tất nhiên nếu chân đường cao mà trùng gốc vuông ở đáy thì ta chọn gốc tọa ngay điểm đó luôn là tốt. + Nhìn vào hình thực này để tính tọa độ các điểm trong mặt phẳng đáy trước. Sau đó tính các điểm phát sinh và đỉnh. + Cứ quan tâm vào việc chọn trục Ox Oy ở đáy, sau đó gắn trục Oz vào là xong.

Nguồn: toanmath.com

Đọc Sách

Bài toán viết phương trình đường thẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình đường thẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Viết phương trình đường thẳng khi biết vectơ chỉ phương. Dạng 2: Viết phương trình đường thẳng khi biết cặp vectơ pháp tuyến. Dạng 3: Lập phương trình đường thẳng d’ qua A cắt d và vuông góc với ∆ (hoặc song song với (P)). Dạng 4: Lập phương trình đường thẳng ∆ cắt d1 và d2 đồng thời song song với d (hoặc vuông góc với (P), hoặc đi qua điểm M). Dạng 5: Viết phương trình đường phân giác của hai đường thẳng. Dạng 6: Viết phương trình đường thẳng liên quan đến góc và khoảng cách. Dạng 7: Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau. Dạng 8: Viết phương trình đường thẳng ∆ là hình chiếu vuông góc của d lên mặt phẳng (P). BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình mặt phẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình mặt phẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Viết phương trình mặt phẳng khi biết vectơ pháp tuyến. Dạng 2: Viết phương trình mặt phẳng liên quan đến khoảng cách. Dạng 3: Phương trình mặt phẳng theo đoạn chắn. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Phương trình mặt phẳng, phương trình đường thẳng và phương trình mặt cầu
Tài liệu gồm 31 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương trình mặt phẳng, phương trình đường thẳng và phương trình mặt cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. PHƯƠNG TRÌNH MẶT PHẲNG. VẤN ĐỀ 2. PHƯƠNG TRÌNH ĐƯỜNG THẲNG. VẤN ĐỀ 1. PHƯƠNG TRÌNH MẶT CẦU. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Một số bài toán cực trị trong hình học giải tích không gian
Tài liệu gồm 74 trang, hướng dẫn phương pháp giải một số bài toán cực trị trong hình học giải tích không gian Oxyz, đây là dạng toán vận dụng cao thường gặp trong chương trình Hình học 12 chương 3 và các đề thi tốt nghiệp THPT môn Toán. Phần 1 . Một số bài toán cực trị trong hình học giải tích không gian 1. Chủ đề 1. Tìm điểm thỏa điều kiện cực trị 1. + Bài toán 1: Cho điểm A cố định và điểm M di động trên hình (H) (đường thẳng, mặt phẳng). Tìm tọa độ M để độ dài AM nhỏ nhất 1. + Bài toán 2: Cho mặt phẳng (P) và hai điểm A, B phân biệt. Tìm điểm M thuộc (P) để MA + MB nhỏ nhất, |MA − MB| lớn nhất 2. + Bài toán 3: Cho mặt phẳng (P) và mặt cầu (S) cố định ((P) và (S) không có điểm chung). Xét điểm M di động trên (P) và N di động trên (S). Xác định vị trí M và N để độ dài MN nhỏ nhất (lớn nhất) 5. + Bài toán 4: Cho hai đường thẳng d1 và d2 chéo nhau. Tìm M thuộc d1, N thuộc d2 sao cho độ dài MN nhỏ nhất (đoạn vuông góc chung) 7. + Bài toán 5: Tìm điểm M thoả mãn điều kiện cực trị liên quan đến các yếu tố định lượng (diện tích, thể tích, khoảng cách, ..) 9. + Bài toán 6: Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) sao cho độ dài của véc tơ tổng (hiệu) nhỏ nhất 11. + Bài toán 7:Tìm tọa độ điểm M thuộc hình (H) (mặt phẳng, đường thẳng) để biểu thức T = m.MA2 + n.MB2 + k.MC2 nhỏ nhất (lớn nhất) 13. Chủ đề 2. Lập phương trình mặt phẳng 16. + Bài toán 1: Viết phương trình mặt phẳng chứa M và cách A một khoảng lớn nhất 16. + Bài toán 2: Viết phương trình mặt phẳng chứa đường thẳng d (hoặc hai điểm B, C) và cách điểm A một khoảng lớn nhất 19. + Bài toán 3: Viết phương trình mặt phẳng chứa A và song song với ∆ và cách ∆ một khoảng lớn nhất 22. + Bài toán 4: Viết phương trình mặt phẳng chứa d và tạo với mặt phẳng (Q) một góc nhỏ nhất 24. + Bài toán 5: Viết phương trình mặt phẳng chứa d và tạo với d0 một góc lớn nhất 26. + Bài toán 6: Viết phương trình mặt phẳng đi qua A và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 28. + Bài toán 7: Viết phương trình mặt phẳng chứa d và cắt mặt cầu theo một đường tròn giao tuyến có bán kính nhỏ nhất 29. Chủ đề 3. Lập phương trình đường thẳng 33. + Bài toán 1: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d lớn nhất 33. + Bài toán 2: Viết phương trình đường thẳng d nằm trong mặt phẳng (P) và đi qua M sao cho khoảng cách từ A đến d nhỏ nhất 34. + Bài toán 3: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc lớn nhất 36. + Bài toán 4: Viết phương trình đường thẳng d nằm trong mặt phẳng (P), đi qua M và tạo với d0 một góc nhỏ nhất 37. + Bài toán 5: Cho mặt phẳng (P) và mặt cầu (S) cắt nhau theo một đường tròn giao tuyến (C) và điểm A nằm trong hình tròn (C). Viết phương trình đường thẳng d đi qua điểm A và cắt (C) tại hai điểm M, N thỏa mãn độ dài MN ngắn nhất 40. Phần 2 . Đáp án và hướng dẫn giải bài tập tương tự của từng Chủ đề 42. A Đáp án bài tập tương tự của từng Chủ đề 42. B Lời giải chi tiết bài tập tương tự của từng Chủ đề 42.