Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập thể tích khối chóp đều có lời giải chi tiết

Bài toán yêu cầu tính thể tích khối chóp đều với một số giả thiết được cho trước như: độ dài cạnh, góc giữa hai đường thẳng, góc giữa một đường thẳng với một mặt phẳng, góc giữa hai mặt phẳng … là dạng bài toán thường gặp trong chương trình Hình học 12 và đề thi THPT Quốc gia môn Toán. Thông qua việc thực hành giải toán liên quan đến khối chóp đều, chúng ta sẽ rút ra được các tính chất và hướng tiếp cận giải quyết dạng toán này. giới thiệu đến bạn đọc đề bài và hướng dẫn giải chi tiết 85 bài tập thể tích khối chóp đều, tài liệu gồm 55 trang. Trích dẫn một số bài toán trong tài liệu bài tập thể tích khối chóp đều có lời giải chi tiết: + Cắt một miếng giấy hình vuông như hình bên và xếp thành hình một hình chóp tứ giác đều. Biết các cạnh hình vuông bằng 20 cm, OM = x cm. Tìm x để hình chóp đều ấy có thể tích lớn nhất. + Cho khối chóp tam giác đều. Nếu tăng cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp đó sẽ: A. Giảm đi hai lần. B. Không thay đổi. C. Tăng lên hai lần. D. Giảm đi ba lần. [ads] + Trong tất cả các khối chóp tứ giác đều ngoại tiếp mặt cầu bán kính bằng a, thể tích V của khối chóp có thể tích nhỏ nhất. + Người ta gọt một khối lập phương gỗ để lấy khối tám mặt đều nội tiếp nó (tức là khối có các đỉnh là các tâm của các mặt khối lập phương). Biết các cạnh của khối lập phương bằng a. Hãy tính thể tích của khối tám mặt đều đó. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a. Gọi G là trọng tâm của tam giác SAC và khoảng cách từ G đến mặt bên (SCD) bằng a√3/6. Tính khoảng cách từ tâm O của đáy đến mặt bên (SCD) và thể tích của khối chóp S.ABCD.

Nguồn: toanmath.com

Đọc Sách

Các dạng bài tập VDC mặt nón, hình nón và khối nón
Tài liệu gồm 25 trang, tóm tắt lý thuyết cơ bản cần nắm và hướng dẫn phương pháp giải các dạng bài tập trắc nghiệm vận dụng cao (VDC / nâng cao / khó) mặt nón, hình nón và khối nón, phù hợp với đối tượng học sinh khá – giỏi khi học chương trình Hình học 12 chương 2 (mặt cầu, mặt trụ, mặt nón) và ôn thi điểm 8 – 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán. Các dạng bài tập trắc nghiệm VDC mặt nón, hình nón và khối nón: A. LÍ THUYẾT TRỌNG TÂM Mặt nón tròn xoay. Hình nón tròn xoay. Khối nón tròn xoay. Công thức cần nhớ. Sơ đồ hệ thống hóa. B. CÁC DẠNG BÀI TẬP Dạng 1: Tính diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện của hình nón. Dạng 2: Tính thể tích khối nón, bài toán cực trị. Dạng 3: Bài toán thực tế về hình nón, khối nón.
Bài tập VD VDC mặt cầu, mặt trụ, mặt nón
Tài liệu gồm 48 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn 50 câu hỏi và bài tập trắc nghiệm chuyên đề mặt cầu, mặt trụ, mặt nón, mức độ vận dụng và vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán năm học 2019 – 2020. Tài liệu phù hợp với đối tượng học sinh có học lực khá – giỏi, ôn thi điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT 2020 môn Toán.
Bài tập vận dụng min - max hình học không gian có lời giải chi tiết
giới thiệu đến quý thầy, cô giáo và các em học sinh tài liệu tuyển chọn các bài tập vận dụng min – max hình học không gian có lời giải chi tiết, tài liệu được biên soạn bởi quý thầy, cô giáo nhóm Strong Team Toán VD – VDC. Các bài toán thuộc chủ đề min – max (giá trị lớn nhất – giá trị nhỏ nhất) trong hình học không gian đa phần là các bài toán khó, là câu phân loại học sinh khá giỏi trong các đề thi, đề kiểm tra và gần như không thể thiếu trong các đề thi THPT Quốc gia môn Toán. Thông qua các bài toán được phân tích và giải chi tiết, hy vọng các em sẽ rút ra được những kỹ thuật xử lý khi gặp dạng toán này. Trích dẫn tài liệu bài tập vận dụng min – max hình học không gian có lời giải chi tiết : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA = b và vuông góc với mặt phẳng (ABCD). Điểm M thay đổi trên cạnh CD, H là hình chiếu vuông góc của S trên BM. Tìm giá trị lớn nhất của thể tích khối chóp S.ABH theo a, b. [ads] + Gọi x, y, z là chiều dài, chiều rộng và chiều cao của thùng giấy dạng hình hộp chữ nhật không có nắp trên (hình vẽ). S là tổng diện tích xung quanh và đáy còn lại. Trong các thùng có cùng diện tích S, tìm tổng x + y + z theo S của chiếc thùng có thể tích lớn nhất. + Cho tứ diện ABCD có DA = DB = DC = 6 và đôi một vuông góc với nhau. Điểm M thay đổi trong tam giác ABC. Các đường thẳng đi qua M song song DA, DB, DC theo thứ tự cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt tại A1, B1, C1. Tìm thể tích lớn nhất của khối tự diện MA1B1C1 khi M thay đổi.
Phân dạng và bài tập trắc nghiệm mặt cầu - mặt trụ - mặt nón - Nguyễn Bảo Vương
Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương phân dạng và tuyển chọn các bài tập trắc nghiệm mặt cầu – mặt trụ – mặt nón có đáp án, các bài tập chủ yếu được trích dẫn từ các đề thi thử Toán THPT Quốc gia. Bài 1 . Hình nón – khối nón Dạng 1. Tính đường sinh, đường cao, bán kính đường tròn đáy Dạng 2. Tính diện tích xung quanh – diện tích toàn phần Dạng 3. Tính thể tích khối nón Dạng 4. Bài toán liên quan đến thiết diện khối nón Dạng 5. Bài toán liên đến nội ngoại tiếp của hình nón Dạng 6. Bài toán liên quan đến min-max khối nón Dạng 7. Bài toán thực tế liên quan đến khối nón Bài 2 . Hình trụ – khối trụ Dạng 1. Tính độ dài đường cao, bán kính đáy. Dạng 2. Tính diện tích xung quanh, diện tích toàn phần Dạng 3. Tính thể tích [ads] Dạng 4. Bài toán liên quan đến thiết diện Dạng 5. Bài toán liên quan đến nội ngoại tiếp của hình trụ Dạng 6. Bài toán min – max Dạng 7. Bài toán thực tế Bài 3 . Hình cầu – khối cầu  Dạng 1. Tính bán kính khối cầu Dạng 2. Tính diện tích mặt cầu Dạng 3. Tính thể tích khối cầu Dạng 4. Bài toán liên quan đến thiết diện, dây cung Dạng 5. Bài toán liên quan đến mặt cầu nội tiếp – ngoại tiếp khối đa diện Dạng 6. Bài toán min – max Dạng 7. Bài toán thực tế