Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép trừ hai số nguyên
Nội dung Chuyên đề phép trừ hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép trừ hai số nguyênLÝ THUYẾT TRỌNG TÂMCÁC DẠNG BÀI TẬP Chuyên đề phép trừ hai số nguyên Tài liệu này bao gồm 16 trang, tập trung vào lý thuyết quan trọng, các dạng bài toán và bài tập chuyên đề về phép trừ hai số nguyên. Đồng thời, tài liệu cũng cung cấp đáp án và lời giải chi tiết, hỗ trợ các học sinh lớp 6 trong quá trình học tập chương trình Toán lớp 6, phần Số học chương 2: Số nguyên. Mục tiêu của tài liệu này là giúp học sinh: Hiểu rõ quy tắc trừ hai số nguyên. Thực hành phép trừ hai số nguyên một cách chính xác. Vận dụng quy tắc dấu ngoặc và quy tắc chuyển vế trong các phép tính. LÝ THUYẾT TRỌNG TÂM Tập trung vào việc trình bày lý thuyết quan trọng về phép trừ hai số nguyên. CÁC DẠNG BÀI TẬP Dạng 1: Thực hành phép trừ hai số nguyên. Để trừ số nguyên a cho số nguyên b, ta chỉ cần cộng a với số đối của b. Dạng 2: Vận dụng quy tắc dấu ngoặc. Khi loại bỏ dấu ngoặc với dấu "-" phía trước, ta phải đổi dấu của tất cả các số hạng trong ngoặc. Dạng 3: Sử dụng quy tắc chuyển vế. Khi chuyển vế một số hạng từ vế này sang vế kia của một đẳng thức, ta cần đảo ngược dấu của số hạng đó. Tóm lại, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức cơ bản về phép trừ hai số nguyên và áp dụng chúng vào thực hành các bài tập đa dạng.
Chuyên đề phép cộng hai số nguyên
Nội dung Chuyên đề phép cộng hai số nguyên Bản PDF - Nội dung bài viết Chuyên đề phép cộng hai số nguyên Chuyên đề phép cộng hai số nguyên Tài liệu này gồm 15 trang, tập trung vào lý thuyết và các dạng toán liên quan đến phép cộng hai số nguyên. Được biên soạn để hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán, đặc biệt là chương trình Số học chương 2: Số nguyên. Mục tiêu của tài liệu: Hiểu quy tắc cộng hai số nguyên. Thực hiện phép cộng hai số nguyên. Vận dụng các tính chất như giao hoán, kết hợp, cộng với số 0, cộng với số đối trong tính toán. LÝ THUYẾT TRỌNG TÂM Tài liệu bắt đầu bằng việc giới thiệu quy tắc cộng hai số nguyên, cung cấp các ví dụ minh họa để học sinh dễ dàng nắm bắt và hiểu được cách thực hiện phép cộng. CÁC DẠNG BÀI TẬP Tiếp theo, tài liệu đưa ra các dạng bài tập khác nhau. Dạng 1 yêu cầu thực hiện phép cộng số nguyên, bao gồm cộng hai số nguyên cùng dấu và khác dấu. Dạng 2 tập trung vào áp dụng các tính chất của phép cộng số nguyên để tính tổng một cách linh hoạt. Với cách trình bày chi tiết, dễ hiểu và nhiều ví dụ minh họa, tài liệu này sẽ giúp học sinh lớp 6 nắm vững kiến thức về phép cộng hai số nguyên và phát triển kĩ năng tính toán của mình một cách nhanh chóng và hiệu quả.
Chuyên đề tập hợp các số nguyên
Nội dung Chuyên đề tập hợp các số nguyên Bản PDF - Nội dung bài viết Chuyên đề tập hợp các số nguyên Chuyên đề tập hợp các số nguyên Tài liệu này cung cấp kiến thức cơ bản về các số nguyên, giúp học sinh lớp 6 hiểu rõ về nhận biết, biểu diễn và so sánh số nguyên. Trải qua 16 trang sách, học sinh sẽ được hướng dẫn cách nhận biết số nguyên âm và học cách biểu diễn chúng trên trục số. Đồng thời, sách cũng giúp học sinh hiểu rõ về ý nghĩa của số nguyên âm trong các bài toán thực tiễn. Thông qua các dạng bài tập và lời giải chi tiết, học sinh sẽ rèn luyện được kỹ năng xác định số nguyên, so sánh các số nguyên, tính giá trị tuyệt đối của số nguyên. Đặc biệt, sách cũng giới thiệu các tính chất cơ bản về số nguyên, giúp học sinh tự tin hơn khi giải các bài toán liên quan đến chương trình Toán lớp 6. Với mục tiêu làm nền tảng cho việc hiểu sâu về số học, tài liệu này không chỉ hỗ trợ học sinh trong quá trình học tập mà còn giúp họ phát triển kỹ năng logic, suy luận và tư duy toán học.
Chuyên đề bội chung và bội chung nhỏ nhất
Nội dung Chuyên đề bội chung và bội chung nhỏ nhất Bản PDF - Nội dung bài viết Chuyên đề bội chung và bội chung nhỏ nhất Chuyên đề bội chung và bội chung nhỏ nhất Tài liệu này bao gồm 12 trang, cung cấp kiến thức về bội chung và bội chung nhỏ nhất của hai hay nhiều số. Nội dung tập trung vào lý thuyết cơ bản, các dạng toán và bài tập thực hành. Đi kèm là đáp án và lời giải chi tiết, giúp học sinh lớp 6 học tập môn Toán một cách hiệu quả. Trước hết, chúng ta cần hiểu khái niệm bội chung và bội chung nhỏ nhất của hai hay nhiều số. Bội chung là tổ hợp của tất cả các số đó. Bội chung nhỏ nhất là số nhỏ nhất trong tập hợp các bội chung của các số đó. Để tìm bội chung nhỏ nhất, ta cần phân tích các số ra thừa số nguyên tố, chọn ra các thừa số chung và riêng, sau đó lập tích các thừa số với số mũ lớn nhất của nó. Kết quả là bội chung nhỏ nhất cần tìm. Thông qua việc tìm bội chung nhỏ nhất, chúng ta có thể dễ dàng tìm bội chung của các số đã cho. Ngoài ra, quen biết với các dạng bài tập về bội chung và bội chung nhỏ nhất giúp học sinh vận dụng kiến thức vào thực tế một cách linh hoạt và hiệu quả. Trên cơ sở lí thuyết và thực hành này, học sinh sẽ phát triển kiến thức vững chắc về bội chung và bội chung nhỏ nhất, từ đó năng động giải quyết các bài toán liên quan đến chương trình Toán lớp 6. Với sự hỗ trợ từ tài liệu này, việc ôn tập và bổ túc ở mức độ cao hơn sẽ trở nên dễ dàng và hiệu quả hơn bao giờ hết.