Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 10 năm 2023 - 2024 sở GDĐT Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 10 năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Lớp 10D có 19 học sinh giỏi môn Toán, 16 học sinh giỏi môn Vật lí và 15 học sinh giỏi môn Hóa học. Trong đó có 5 học sinh giỏi cả hai môn Toán và môn Vật lí, 5 học sinh giỏi cả hai môn Vật lí và môn Hóa học, 5 học sinh giỏi cả hai môn Toán và môn Hóa học và có 3 học sinh giỏi cả ba môn Toán, Vật lí, Hóa học. Ngoài ra, trong lớp có 6 học sinh không giỏi môn nào trong ba môn Toán, Vật lí, Hóa học. Tìm số học sinh của lớp 10D? + Hai chất điểm A, B cách nhau 60 m. Tại cùng thời điểm, chất điểm A chuyển động thẳng trên đường thẳng AB theo hướng từ A đến B với vận tốc không đổi 1 v ms 10, chất điểm B chuyển động trên đường thẳng BC theo hướng từ B đến C với vận tốc 2 v ms 8. Biết ABC = 120, hỏi sau bao nhiêu giây tính từ lúc cả hai bắt đầu cùng chuyển động thì khoảng cách giữa hai chất điểm ngắn nhất? + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 210 gam đường, 9 lít nước và 24 gam hương liệu để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30 gam đường, 1 lít nước và 1 gam hương liệu; Để pha chế 1 lít nước táo cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Mỗi lít nước cam nhận được 60 điểm thưởng, mỗi lít nước táo nhận được 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước trái cây mỗi loại để đạt được số điểm thưởng cao nhất? A. 5 lít nước cam và 4 lít nước táo. B. 4 lít nước cam và 6 lít nước táo. C. 6 lít nước cam và 5 lít nước táo. D. 4 lít nước cam và 5 lít nước táo.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong - TP HCM
Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 10 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán 10 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với số nguyên dương n 2, xét bảng vuông gồm có 2 1 2 1 n n ô vuông, người ta viết vào mỗi ô chỉ một trong 3 số 1, 0 hoặc 1 sao cho trong mỗi bảng con 2 2 luôn tìm được 3 ô có tổng bằng 0. Gọi n S là giá trị lớn nhất của tổng tất cả các số trong bảng. Chứng minh? + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn O. Tia AO cắt đoạn thẳng BC tại L. Gọi A là điểm đối xứng với A qua đường thẳng BC. Giả sử tiếp tuyến qua A của đường tròn ngoại tiếp tam giác ABC cắt các tia AB AC lần lượt tại các điểm D E. a. Chứng minh đường tròn ngoại tiếp các tam giác A B D, ACE, AAL cùng đi qua một điểm khác A. b. Gọi J là tâm đường tròn ngoại tiếp tam giác ADE. Chứng minh đường tròn ngoại tiếp tam giác JDE tiếp xúc với. + Cho a b c là độ dài các cạnh của một tam giác có chu vi bằng 2. Chứng minh?
Đề Olympic tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT TP Hồ Chí Minh
Sáng thứ Bảy ngày 17 tháng 04 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi Olympic tháng 4 cấp THPT mở rộng môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT TP Hồ Chí Minh gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút.
Đề Olympic Toán 10 năm 2020 - 2021 liên cụm trường THPT - Hà Nội
Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán 10 năm học 2020 – 2021. Đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán 10 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Tìm tham số b và c sao cho hàm số có đồ thị là một đường parabol  với đỉnh là I(2;5). + Lập bảng biến thiên của hàm số. Từ đó hãy tìm tham số m sao cho phương trình có nghiệm duy nhất. + Cho tam giác ABC. Tam giác ABC có hai đường trung tuyến BM và CN vuông góc với nhau tại trọng tâm G. Tính theo a diện tích tam giác ABC.
Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Trong mặt phẳng với tọa độ Oxy, cho tam giác ABC, BE và CD là các đường cao của tam giác.Giả sử D(2;0), E(1;3) và đường thẳng BC có phương trình: y = 1 – 2x. a/ Tìm tọa độ của M biết M là trung điểm của BC. b/ Tìm tọa độ của điểm B biết B có hoành độ dương. + Cho các số thực x, y, z thỏa mãn x + y + z = 0, x2 + y2 + z2 = 8. Tìm giá trị nhỏ nhất của biểu thức S = |x| + |y| + |z|. + Cho lục giác ABCDEF có AB vuông góc với EF và hai tam giác ACE và BDF có cùng trọng tâm. Chứng minh rằng AB2 + EF2 = CD2.