Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bất phương trình mũ không chứa tham số

Tài liệu gồm 24 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Toán VDC & HSG THPT, hướng dẫn phương pháp giải bài toán Bất phương trình mũ không chứa tham số; đây là dạng toán thường gặp trong chương trình Toán 12 phần Giải tích chương 2. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP HÀM SỐ – ĐÁNH GIÁ (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Nhắc lại kiến thức cũ: Đạo hàm: ln u u a ua a. Nếu hàm số f đồng biến trên khoảng D thì xy D f x f y x y. Nếu hàm số f nghịch biến trên khoảng D thì xy D f x f y x y. Bước 1 : Đặt điều kiện của bpt (nếu có). Bước 2 : Các phương pháp giải: Phương pháp 1 : Dùng tính đơn điệu của hàm số. Phương pháp 2 : Dùng phương pháp đồ thị hàm số. Phương pháp 3 : Đánh giá. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶC TRƯNG KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Bước 1 : Biến đổi bất phương trình về dạng fa fb fa fb fa fb fa fb. Bước 2 : Xét hàm số y fx chứng minh hàm số luôn đồng biến hoặc luôn nghịch biến. Bước 3 : Do hàm số y fx luôn đồng biến, hoặc luôn nghịch biến suy ra fa fb a b hoặc fa fb a. GIẢI BẤT PHƯƠNG TRÌNH MŨ BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ KHÔNG HOÀN TOÀN (KHÔNG CHỨA THAM SỐ) PHƯƠNG PHÁP: Đặt u x T a với T > 0. Bất phương trình biến đổi về dạng 2 AT g x T h x hoặc 2 AT g x T h x. Bước 1 : Giải phương trình 2 AT g x T h x 0. Bước 2 : Lập bảng xét dấu của 2 AT g x T h x. Bước 3 : Từ bảng kết luận.

Nguồn: toanmath.com

Đọc Sách

100 câu trắc nghiệm hàm số lũy thừa, mũ và logarit - Bùi Thế Việt
Tài liệu gồm 12 trang với 100 câu hỏi trắc nghiệm chọn lọc về chủ đề hàm số lũy thừa, hàm số mũ và hàm số logarit.
Chuyên đề trắc nghiệm hàm số lũy thừa, mũ và logarit
Tài liệu gồm 35 trang với phần tóm tắt lý thuyết và bài tập trắc nghiệm.
50 câu trắc nghiệm về hàm số mũ và logarit - Trần Thanh Minh
Tài liệu 50 câu trắc nghiệm về hàm số mũ và logarit do thầy Trần Thanh Minh biên soạn gồm 5 trang, có đáp án.
600 câu hỏi trắc nghiệm chuyên đề hàm số Mũ và Logarit - Nhóm Toán
Tài liệu 600 câu hỏi trắc nghiệm chuyên đề hàm số Mũ và Logarit được hoàn thiện và chia sẻ bởi các thành viên trong groups nhóm Toán, gồm 89 trang được chia thành 10 đề, mỗi đề gồm 60 câu hỏi.