Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 1 năm 2022 2023 trường THPT Sơn Tây Hà Nội

Nội dung Đề thi thử Toán vào lần 1 năm 2022 2023 trường THPT Sơn Tây Hà Nội Bản PDF - Nội dung bài viết Đề thi thử Toán vào lần 1 năm 2022 - 2023 trường THPT Sơn Tây Hà Nội Đề thi thử Toán vào lần 1 năm 2022 - 2023 trường THPT Sơn Tây Hà Nội Chào mừng đến với đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2022 - 2023 của trường THPT Sơn Tây, Hà Nội. Đây là cơ hội để quý thầy cô và các em học sinh lớp 9 thử sức và chuẩn bị cho kỳ thi sắp tới. Đề thi thử bao gồm các câu hỏi thú vị và thách thức, như câu hỏi giải bài toán về việc tiêm vaccine phòng Covid-19 của trạm y tế phường Trung Hưng. Bằng cách lập phương trình hay hệ phương trình, học sinh sẽ phải tư duy logic và giải quyết vấn đề một cách chính xác. Câu hỏi khác yêu cầu học sinh tính diện tích bề mặt được dán giấy trang trí của một chiếc lồng đèn trung thu hình trụ. Bằng cách tính toán và áp dụng kiến thức học tập, học sinh sẽ rèn luyện kỹ năng toán học một cách hiệu quả. Cuối cùng, câu hỏi về biểu thức toán học cũng sẽ thử thách khả năng suy luận của học sinh. Thông qua việc tìm giá trị nhỏ nhất của biểu thức, học sinh sẽ cải thiện khả năng xử lý và giải quyết bài toán phức tạp. Chúc quý thầy cô và các em học sinh thành công trong việc làm bài và đạt kết quả tốt trong kỳ thi sắp tới. Hãy cố gắng hết mình và không ngần ngại trước bất kỳ thách thức nào.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút (không kể thời gian giám thị phát đề); kỳ thi được diễn ra vào thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Nghệ An : + Cho phương trình x2 + 3x – 1 = 0 có hai nghiệm phân biệt x1 và x2. Không giải phương trình, hãy tính giá trị của biểu thức T. + Trong kỳ SEA Games 31 tổ chức tại Việt Nam, thú sao la được chọn làm linh vật. Một phân xưởng được giao sản xuất 420 thú nhồi bông sao la trong một thời gian dự định để làm quà tặng. Biết rằng nếu mỗi giờ phân xưởng sản xuất thêm 5 thú nhồi bông sao la thì sẽ rút ngắn được thời gian hoàn thành công việc là 2 giờ. Tính thời gian dự định của phân xưởng? + Cho tam giác ABC vuông tại C (AC < BC), đường cao CK và đường phân giác trong BD (K thuộc AB, D thuộc AC). Qua D kẻ đường thẳng vuông góc với AC cắt CK, AB lần lượt tại H và I. a) Chứng minh CDKI là tứ giác nội tiếp. b) Chứng minh AD.AC = DH.AB. c) Gọi F là trung điểm AD. Đường tròn tâm I bán kính ID cắt BC tại M (M khác B) và cắt AM tại N (N khác M). Chứng minh B, N, F thẳng hàng.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Bến Tre, tỉnh Bến Tre; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022.
Đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022 – 2023 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 – 2023 trường THPT chuyên Hà Tĩnh : + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm phân biệt A và B. Trên tia đối của tia AB lấy điểm M, kẻ các tiếp tuyến ME, MF với đường tròn (O’), trong đó E và F thuộc đường tròn (O’), F nằm trong đường tròn (O). Hai đường thẳng AE và AF cắt đường tròn (O) lần lượt tại P và Q (P và Q khác A). Tia EF cắt PQ tại K. a) Chứng minh tam giác BKP đồng dạng với tam giác BFA. b) Gọi I và J lần lượt là giao điểm của AB với OO’ và EF. Chứng minh IJE = IFM. c) Chứng minh PQ = 2OA2 – OK2. + Cho các số thực dương a b c thỏa mãn a + b + c = 3abc. Tìm giá trị lớn nhất của biểu thức P. + Lớp 9A có 34 học sinh, các học sinh lớp này đều tham gia một số câu lạc bộ của trường. Mỗi học sinh của lớp tham gia đúng một câu lạc bộ. Nếu chọn ra 10 học sinh bất kì của lớp này thì luôn có ít nhất 3 học sinh tham gia cùng một câu lạc bộ. Chứng minh rằng có một câu lạc bộ gồm ít nhất 9 học sinh lớp 9A tham gia.