Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán lần 2 vào năm 2022 2023 phòng GD ĐT Diễn Châu Nghệ An

Nội dung Đề thi thử Toán lần 2 vào năm 2022 2023 phòng GD ĐT Diễn Châu Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán lần 2 vào năm 2022-2023 phòng GD&ĐT Diễn Châu, Nghệ An Đề thi thử Toán lần 2 vào năm 2022-2023 phòng GD&ĐT Diễn Châu, Nghệ An Sytu xin gửi đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán lần 2 tuyển sinh vào lớp 10 THPT năm học 2022–2023 do phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An tổ chức. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán lần 2 vào lớp 10 năm 2022–2023 phòng GD&ĐT Diễn Châu, Nghệ An: + Bài toán 1: Giải phương trình x² – mx + m – 1 = 0. Tìm m để phương trình có hai nghiệm phân biệt x₁ và x₂ thoả mãn điều kiện x₁² + 3x₁x₂ = 3x₁ + 3m + 16. + Bài toán 2: Tuấn đạp xe từ nhà ra bãi biển và trở lại. Biết rằng vận tốc trên đường đi lớn hơn vận tốc trên đường về 2km/h. Thời gian đi và về chỉ khác nhau 3 phút. Tính vận tốc xe đạp của Tuấn, biết quãng đường là 3km. + Bài toán 3: Trong đường tròn (O), vẽ hai tiếp tuyến AB và AC. Kẻ đường kính BD và đường chéo AE. Chứng minh rằng tứ giác ABOC nội tiếp được đường tròn. + Bài toán 4: Tính IE² + AH.AO = AI², với I là trung điểm của ED, H là giao điểm của AO và BC. + Bài toán 5: Chứng minh rằng M là trung điểm của đoạn CK, khi có điểm K là chân đường vuông góc kẻ từ C đến OD và đoạn ED cắt CK tại M. Đây là những bài toán đa dạng và thú vị sẽ giúp các em học sinh rèn luyện kỹ năng giải toán và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (vòng 2)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (vòng 2) gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho n là số nguyên dương, n>5. Xét một đa giác lồi n cạnh. Người ta muốn kẻ số đường chéo của đa giác mà các đường chéo này chia đa giác đã cho thành đúng k miền, mỗi miền là một ngũ giác lồi (hai miền bất kỳ không có điểm trong chung) a. Chứng minh rằng ta có thể thực hiện được với n=2018, k=672 b. Với n=2017, k=672 ta có thể thực hiện được không? Hãy giải thích [ads] + Giả sử p, q là hai số nguyên tố thỏa mãn đẳng thức: p(p – 1) = q(q^2 – 1) (*) a) Chứng minh rằng tồn tại số nguyên dương K sao cho: p – 1 = kq; q^2 – 1= kp b) Tìm tất cả các số nguyên tố p; q thỏa mãn đẳng thức (*)
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên KHTN - Hà Nội (Vòng 1)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên KHTN – Hà Nội (Vòng 1) gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hình thoi ABCD có góc BAD < 90 độ. Đường tròn tâm I nội tiếp tam giác ABD tiếp xúc với BD, BA lần lượt tại J, L. Trên đường thẳng LJ lấy điểm K sao cho BK song song ID a) Chứng minh rằng góc CBK = góc ABI b) Chứng minh rằng KC vuông góc với KB c) Chứng minh rằng bốn điểm C, K, I, L cùng nằm trên một đường tròn [ads] + Tìm tập hợp số nguyên dương n sao cho tồn tại một cách sắp xếp các số 1, 2, 3 … n thành a1, a2, a3 … an mà khi chia các số a1, a1a2, a1a2a3 … a1a2…an cho n ta được các số dư đôi một khác nhau.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 4 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF ,M là điểm di động trên đoạn CE [ads] a. Tính số đo góc BIF b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM=AB thì tứ giác ABHI là tứ giác nội tiếp c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán trường chuyên Lê Quý Đôn - Bình Định (Chuyên Toán)
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán trường chuyên Lê Quý Đôn – Bình Định (Chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (T) tâm O đường kı́nh AB, trên tiếp tuyến tại A lấy một điểm P khác A, điểm K thuôc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (C nằm giữa P và D), H là trung điểm của CD [ads] a) Chứng minh tứ giác AOHP nội tiếp được đường tròn b) Kẻ DI song song với PO, điểm I thuôc AB, chứng minh: góc PDI = góc BAH c) Chứng minh đẳng thức PA^2 = PC.PD d) BC cắt OP tai J, chứng minh AJ song song với DB