Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán khó về quan hệ vuông góc

Tài liệu gồm 111 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển chọn các bài toán hay và khó về chủ đề vectơ trong không gian, quan hệ vuông góc, thuộc chương trình Hình học 11 chương 3, có đáp án và lời giải chi tiết. 1. Phương pháp vector Đây là một phương pháp rất mạnh để xử lý các bài toán có yếu tố vuông góc ví dụ như hình hộp chữ nhật, hình lập phương, khối tứ diện đều. 1.1 Cơ sở của phương pháp vector. + Quy tắc hình hộp. + Quy tắc trọng tâm tứ diện. + Quy tắc đồng phẳng. 1.2 Các dạng toán và phương pháp giải. Dạng toán 1 . Chứng minh đẳng thức vector. Sử dụng quy tắc cộng, quy tắc trừ ba điểm, quy tắc trung điểm đoạn thẳng, trọng tâm tam giác, trọng tâm tứ giác, quy tắc hình bình hành, quy tắc hình hộp … để biến đổi vế này thành vế kia. Dạng toán 2 . Ba vector đồng phẳng và bốn điểm đồng phẳng. + Để chứng minh ba vector a, b, c đồng phẳng ta có thể thực hiện theo một trong các cách sau: 1. Chứng minh giá của ba vector a, b, c cùng song song với một mặt phẳng. 2. Phân tích c = ma + nb trong đó a, b là hai vector không cùng phương. + Để chứng minh bốn điểm A, B, C, D đồng phẳng ta có thể chứng minh ba vector AB, AC, AD đồng phẳng. Ngoài ra có thể sử dụng kết quả quen thuộc sau: Điều kiện cần và đủ để điểm D thuộc (ABC) là với mọi điểm O bất kì ta có OD = xOA + yOB + zOC trong đó x + y + z = 1. Tính chất trên gọi là tâm tỉ cự trong không gian. Dạng toán 3 . Tính độ dài đoạn thẳng. Để tính độ dài của một đoạn thẳng theo phương pháp vector ta sử dụng cơ sở a2 = |a|2 ⇒ |a| = √a2. 2. Ứng dụng của phương pháp Vector trong một số bài toán đặc biệt 2.1 Góc tạo bởi hai cạnh bất kì của một tứ diện. 2.2 Bổ đề về đường trung bình. 2.3 Ứng dụng trong một số bài toán cực trị. 3. Tuyển tập các bài toán trắc nghiệm khó

Nguồn: toanmath.com

Đọc Sách

Bài toán khoảng cách trong không gian
Tài liệu gồm 63 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán khoảng cách trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: KHOẢNG CÁCH TỪ ĐIỂM ĐẾN MẶT PHẲNG. + Dạng 1: Khoảng cách từ một điểm trên mặt phẳng đáy tới mặt phẳng chứa đường cao. + Dạng 2: Khoảng cách từ chân đường cao đến mặt phẳng bên. + Dạng 3: Khoảng cách từ một điểm bất kỳ đến mặt bên. + Dạng 4: Khoảng cách giữa đường thẳng và mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song. Vấn đề 2: KHOẢNG CÁCH GIỮA HAI ĐƯỜNG THẲNG CHÉO NHAU. + Dạng 1: Khoảng cách giữa hai đường thẳng chéo nhau và vuông góc với nhau. + Dạng 2: Tính khoảng cách giữa hai đường thẳng chéo nhau không vuông góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về góc trong không gian
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về góc trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 11 trong quá trình học tập chương trình Toán 11 phần Hình học chương 3. Vấn đề 1: GÓC GIỮA HAI ĐƯỜNG THẲNG. 1. Định nghĩa góc giữa hai đường thẳng. 2. Cách xác định góc giữa hai đường thẳng. 3. Phương pháp tính góc giữa hai đường thẳng. Vấn đề 2: GÓC GIỮA ĐƯỜNG THẲNG VÀ MẶT PHẲNG. + Dạng 1: Góc giữa cạnh bên và mặt đáy. + Dạng 2: Góc giữa cạnh bên và mặt phẳng chứa đường cao. + Dạng 3: Góc giữa đường cao và mặt bên. + Dạng 4: Góc giữa cạnh bên và mặt bên. Vấn đề 3: GÓC GIỮA HAI MẶT PHẲNG. + Dạng 1: Góc giữa mặt bên và mặt đáy. + Dạng 2: Góc giữa hai mặt bên. + Dạng 3: Sử dụng định lý hình chiếu để tính góc giữa hai mặt phẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Toàn tập góc và khoảng cách vận dụng cao
Tài liệu gồm 62 trang, được biên soạn bởi thầy giáo Lương Tuấn Đức (Giang Sơn), tuyển tập hệ thống bài tập trắc nghiệm chuyên đề góc và khoảng cách vận dụng cao (VDC) lớp 11 THPT. Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 1). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 2). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 3). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 4). Vận dụng cao góc giữa đường thẳng và mặt phẳng – (phần 5). Vận dụng cao góc nhị diện – (phần 1). Vận dụng cao góc nhị diện – (phần 2). Vận dụng cao góc nhị diện – (phần 3). Vận dụng cao góc nhị diện – (phần 4). Vận dụng cao góc nhị diện – (phần 5). Vận dụng cao góc nhị diện – (phần 6). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 1). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 2). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 3). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 4). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 5). Vận dụng cao khoảng cách giữa điểm và mặt phẳng – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 1). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 2). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 3). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 4). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 5). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 6). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 7). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 8). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 9). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 10). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 11). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 12). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 13). Vận dụng cao khoảng cách giữa hai đường thẳng chéo nhau – (phần 14).
Phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc
Tài liệu gồm 173 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập vectơ trong không gian, quan hệ vuông góc, giúp học sinh lớp 11 tham khảo khi học chương trình Hình học 11 chương 3 (Toán 11). BÀI 1 . VECTƠ TRONG KHÔNG GIAN. Dạng 1. Biểu diễn vectơ. Dạng 2. Đẳng thức vectơ. Dạng 3. Đồng phẳng của ba vectơ. Dạng 4. Tìm điểm thỏa mãn đẳng thức vectơ. BÀI 2 . HAI ĐƯỜNG THẲNG VUÔNG GÓC. Dạng 1. Tính góc giữa hai đường thẳng. Dạng 2. Chứng minh hai đường thẳng vuông góc trong không gian. BÀI 3 . ĐƯỜNG THẲNG VUÔNG GÓC VỚI MẶT PHẲNG. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh đường thẳng vuông góc với mặt phẳng. Từ đó suy ra đường thẳng vuông góc với đường thẳng. Dạng 3. Xác định góc – hình chiếu – tính độ dài. Dạng 4. Thiết diện. BÀI 4 . HAI MẶT PHẲNG VUÔNG GÓC. Dạng 1. Câu hỏi lý thuyết. Dạng 2. Chứng minh hai mặt phẳng vuông góc. Dạng 3. Tính góc giữa hai mặt phẳng. Dạng 4. Thiết diện. BÀI 5 . KHOẢNG CÁCH. Dạng 1. Khoảng cách từ một điểm đến đường thẳng. Dạng 2. Khoảng cách từ một điểm đến mặt phẳng. Dạng 3. Khoảng cách giữa hai mặt phẳng song song, khoảng cách từ đường thẳng đến mặt phẳng. Dạng 4. Khoảng cách giữa hai đường thẳng chéo nhau.