Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HKI Toán 11 năm 2018 - 2019 trường Lương Ngọc Quyến - Thái Nguyên

giới thiệu đến bạn đọc nội dung đề thi HKI Toán 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên, đề có mã đề 102 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 3 câu, chiếm 40% tổng số điểm, thông qua kỳ thi này, giáo viên bộ môn Toán và nhà trường sẽ đánh giá được toàn diện chất lượng học tập môn Toán của học sinh khối lớp 11 trong giai đoạn vừa qua của năm học, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HKI Toán 11 năm học 2018 – 2019 trường THPT Lương Ngọc Quyến – Thái Nguyên : + Khẳng định nào sau đây sai? A. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. B. Phép quay biến đường thẳng thành đường thẳng song song hoặc trùng với nó. C. Phép tịnh tiến biến tam giác thành tam giác bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2NC, P thuộc cạnh BD sao cho BP = 3PD. a) Xác định giao tuyến của hai mặt phẳng (MNP) và (BCD). b) Xác định giao điểm I của đường thẳng CD và mặt phẳng (MNP); giao điểm J của đường thẳng AD và mặt phẳng (MNP). Từ đó suy ra ba điểm N, I, J thẳng hàng. c) Giả sử điểm P di động trên cạnh BD. Gọi K là giao điểm của MI và NP. Chứng minh K thuộc một đường thẳng cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Trong giờ thí nghiệm có 20 học sinh, giáo viên chọn 4 học sinh để làm công tác dọn dẹp sau khi làm thí nghiệm xong. Hỏi Giáo viên có bao nhiêu cách chọn? + Một hộp chứa 15 viên bi khác nhau, trong đó có 5 viên bi màu trắng và 10 viên bi màu đỏ, lấy ngẫu nhiên cùng một lúc 6 viên bi. Tính xác suất sao cho 6 viên bi được lấy ra có ít nhất 4 viên bi trắng. + Tìm số hạng chứa x^21 có trong khai triển nhị thức Niu-tơn của biểu thức (x – 2x^3)^15.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Lê Quý Đôn - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 8 ghế. Người ta muốn xếp chỗ ngồi cho 8 học sinh trường A và 8 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp sao cho bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau? + Hộp thứ nhất có 2 bi đỏ và 10 bi vàng, hộp thứ hai có 8 bi đỏ và 4 bi vàng. Lấy từ mỗi hộp 3 viên bi. Tính xác suất để 6 bi được chọn có đủ hai màu. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số trong các số đó. Tính xác suất để số được chọn là số tự nhiên chẵn, có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Trần Phú - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Trần Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Trần Phú – TP HCM : + Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAD. Lấy điểm M thuộc cạnh AB sao cho AB = 3AM. 1) Tìm giao tuyến của mặt phẳng (SAD) và mặt phẳng (GBC). Tìm giao điểm H của đường thẳng BC với mặt phẳng (SGM). 2) Chứng minh rằng đường thẳng MG song song với mặt phẳng (SBC). 3) Mặt phẳng (a) qua M và song song với AD và SB, (a) cắt các cạnh CD, SD, SA lần lượt tại các điểm N, P, Q. Xác định thiết diện của mặt phẳng (a) với hình chóp S.ABCD. + Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Đề thi HK1 Toán 11 năm 2019 - 2020 trường THPT Thủ Khoa Huân - TP HCM
Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 11, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.