Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Cách tìm công thức tổng quát của dãy số cho bởi công thức truy hồi - Phạm Thị Thu Huyền

Tài liệu gồm 23 trang hướng dẫn phương pháp tìm công thức tổng quát của dãy số cho bởi công thức truy hồi thông qua một số ví dụ minh họa, tài liệu được biên soạn bởi cô Phạm Thị Thu Huyền với nội dung gồm: Dạng 1: Tìm số hạng tổng quát của dãy số (dạng đa thức) khi biết các số hạng đầu tiên Dạng 2: Dạng cơ sở: Cho dãy (un) biết u1 = a và un+1 = q.un + d ∀ n ≥ 1 với q, d là các hằng số thực Gồm 4 trường hợp, dạng này được gọi là dạng cơ sở vì: + Với 3 trường hợp 1, 2, và 3 dãy số trở thành các dãy đặc biệt đó là: dãy số hằng, cấp số cộng và cấp số nhân. Các dãy số này ta đều đã tìm được công thức của số hạng tổng quát. [ads] + Trên cơ sở của 3 dãy này, để giải trường hợp 4: bằng phương pháp đặt một dãy số mới (vn) liên hệ với dãy số (un) bằng một biểu thức nào đó để có thể đưa được về dãy số (vn) mà (vn) dãy số hằng hoặc cấp cộng hoặc cấp số nhân. + Vấn đề đặt ra là: Mối liên hệ giữa (un) và (vn) bởi biểu thức nào mới có thể đưa dãy số (vn) thành dãy số hằng hoặc cấp số cộng hoặc cấp số nhân hoặc trường hợp 4. Sử dụng máy tính Casio để tìm các số hạng trong một dãy số được cho bởi công thức truy hồi Theo dự án mới của Bộ Giáo Dục và Đào Tạo, từ năm học 2016 – 2017 kỳ thi THPT Quốc gia, bộ môn Toán thi bằng phương pháp trắc nghiệm. Vậy, với một bài toán về dãy số mà dãy số đó cho bởi công thức truy hồi thì phải giải thế nào? Có phải tìm công thức của số hạng tổng quát hay không? Bài viết giới thiệu quy trình bấm máy tính Casio để tìm giá trị uk của một dãy số cho bởi biểu thức truy hồi.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải toán chuyên đề dãy số - Nguyễn Minh Hải
Tài liệu gồm 23 trang hướng dẫn giải toán chuyên đề dãy số, tài liệu được biên soạn bởi thầy Nguyễn Minh Hải. Phần 1. Một số vấn đề về lý thuyết I – Phương pháp quy nạp toán học II – Một số vấn đề về dãy số Dãy số tăng, giảm (đơn điệu) Dãy số bị chặn Giới hạn dãy số Cấp số công và cấp số nhân III – Một số dạng toán về dãy số thường gặp Chứng minh dãy số tăng, giảm, bị chặn, dãy số có giới hạn Chứng minh dãy số lập thành cấp số cộng, cấp số nhân, tính chất của cấp số Tìm công thức tổng quát của dãy số Chứng minh dãy số có giới hạn và tìm giới hạn của dãy số Một số dạng toán khác về dãy số: bất đẳng thức dãy số, chứng minh tính chất chia hết, chứng minh dãy số nguyên … [ads] Phần 2. Áp dụng giải toán I – Chứng minh dãy số tăng, giảm và bị chặn II – Công thức tổng quát của dãy số III – Tìm giới hạn của dãy số Nếu dãy số cho bởi công thức tổng quát thi ta thường sử dụng các phương pháp tính giới hạn của dãy số để tính. Trong nhiều trường hợp ta phải biến đổi công thức tổng quát đó về dạng đơn giản hơn trước khi tính giới hạn. Một số phương pháp tính giới hạn của dãy số: + Nhân liên hợp đối với giới hạn dạng ∞ – ∞ + Chia cả tử và mẫu cho lũy thừa bậc cao nhất của n đối với giới hạn dạng ∞/∞ + Kết hợp cả hai phương pháp đã nêu ở trên + Sử dụng định lý giới hạn kẹp + Sử dụng điều kiện đủ để dãy số có giới hạn, thiết lập biểu thức về giới hạn. Kết quả giới hạn là nghiệm của phương trình nào đó IV – Một số dạng toán khác Phần 3. bài tập tổng hợp
Tài liệu dãy số - cấp số dành cho học sinh khối chuyên - Lê Quang Ánh
Sách gồm 80 trang với phần tóm tắt lý thuyết và các bài tập nâng cao về dãy số, cấp số cộng và cấp số nhân. Sách gồm 6 chương: + Chương 1 – Cấp số cộng + Chương 2 – Cấp số nhân + Chương 3 – Dãy số + Chương 4 – Dãy số Un = f(Un-1) + Chương 5 – Dãy quy nạp tuyến tính + Chương 6 – Bài tập tổng hợp [ads]
Phương pháp xác định công thức tổng quát của dãy số - Nguyễn Tất Thu
Tài liệu phương pháp xác định công thức tổng quát của dãy số của tác giả Nguyễn Tất Thu gồm 46 trang. Tài liệu gồm 3 nội dung chính: + Sử dụng cấp số cộng – cấp số nhân để xây dựng cách tìm công thức tổng quát của một số dạng dãy số có công thức truy hồi đặc biệt. + Sử dụng phép thế lượng giác để xác định công thức tổng quát của dãy số. + Ứng dụng bài toán tìm công thức tổng quát của dãy số vào giải một số bài toán về dãy số – tổ hợp. [ads]
Kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi - Huỳnh Đoàn Thuần
Tài liệu gồm 24 trang trình bày kĩ thuật tính giới hạn của dãy số cho bởi công thức truy hồi, các dạng toán trong tài liệu gồm: + Dạng 1: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách xác đinh CTTQ của dãy + Dạng 2: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng nguyên lý kẹp + Dạng 3: Tính giới hạn của dãy số cho bởi hệ thức truy hồi bằng cách sử dụng tính đơn điệu và bị chặn [ads]