Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán cực trị số phức bằng phương pháp hình học giải tích - Nguyễn Hữu Tình

Tài liệu gồm 26 trang được biên soạn bởi thầy Nguyễn Hữu Tình (giáo viên trường THPT chuyên Võ Nguyên Giáp – Quảng Bình) hướng dẫn giải bài toán cực trị số phức bằng phương pháp hình học giải tích, đây là lớp các bài toán vận dụng cao số phức và thường xuất hiện trong đề thi THPT Quốc gia 2018. Trong chương trình Toán THPT, phần Đại số mà cụ thể là phần Số học, ở chương trình lớp 12, học sinh được hoàn thiện hiểu biết của mình về các tập hợp số thông qua việc cung cấp một tập hợp số, gọi là Số phức. Trong chương này, học sinh đã bước đầu làm quen với các phép toán cộng, trừ, nhân, chia, khai căn, lũy thừa; lấy môđun, … các số phức. Bằng cách đặt tương ứng mỗi số phức z = x + yi (x, y ∈ R) với mỗi điểm M(x;y) trên mặt phẳng tọa độ Oxy, ta thấy giữa Đại số và Hình học có mối liên hệ với nhau khá “gần gũi”. Hơn nữa, nhiều bài toán Đại số bên Số phức, khi chuyển sang Hình học, từ những con số khá trừu tượng, bài toán đã được minh họa một cách rất trực quan, sinh động và cũng giải được bằng Hình học với phương pháp rất đẹp. Đặc biệt, trong các kỳ thi Đại học, Cao đẳng và THPT Quốc gia những năm gần đây, việc sử dụng phương pháp Hình học để giải quyết các bài toán về Số phức là một trong những phương pháp khá hay và hiệu quả, đặc biệt là các bài toán về Cực trị trong số phức. Hơn nữa, với những bài toán Hình học theo phương pháp trắc nghiệm, nếu khi biểu diễn được trên giấy thì qua hình ảnh minh họa, ta có thể lựa chọn đáp án một cách dễ dàng. [ads] Tuy nhiên, trong thực tế giảng dạy, việc chuyển từ bài toán Đại số nói chung và Số phức nói riêng sang bài toán Hình học ở nhiều học sinh nói chung còn khá nhiều lúng túng, vì vậy việc giải các bài toán về Số phức gây ra khá nhiều khó khăn cho học sinh. Bài toán Cực trị Số phức thông thường thì có khá nhiều cách lựa chọn để giải như dùng Bất đẳng thức, dùng Khảo sát hàm số … Qua chuyên đề này, tôi muốn gợi ý cho học sinh một lối tư duy vận dụng linh hoạt các phương pháp chuyển đổi từ bài toán Đại số sang Hình học cho học sinh, giúp các em có cái nhìn cụ thể hơn về việc chuyển đổi đó và vận duy tư duy này cho những bài toán khác. Với mục tiêu đó, trong chuyên đề này, tôi chỉ tập trung giải quyết bài toán theo hướng Hình học. Không đặt nặng việc so sánh phương pháp nào nhanh hơn, tối ưu hơn phương pháp nào.

Nguồn: toanmath.com

Đọc Sách

Giải nhanh GTLN - GTNN mô đun số phức với Elip và không Elip - Lục Trí Tuyên
Tài liệu gồm 19 trang tuyển tập một số dạng và phương pháp giải bài toán GTLN – GTNN mô đun số phức, tài liệu có các ví dụ minh họa kèm lời giải chi tiết. Nội 1. Hình dạng và thông số của Elip 2. Bài toán liên quan Bài toán chung: Cho M chuyển động trên Elip (E) và một điểm A cố định. Tìm GTLN, GTNN của AM Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| Sự tương ứng ở đây gồm: + M là điểm biểu diễn z + F1, F2 tương ứng là điểm biểu diễn z1, z2 + A là điểm biểu diễn z0 3. Các dạng giải được + Bài toán 1. Phương trình (E) dạng chính tắc: x^2/a^2 + y^2/b^2 = 1 Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – c| + |z + c| = 2a hoặc |z – ci| + |z + ci| = 2a (Elip đứng). Tìm GTLN, GTNN của P = |z – z0| + Bài toán 2. Elip không chính tắc nhưng A là trung điểm của F1F2 tức A là tâm Elip Bài toán số phức tương ứng: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a với 2a > |z1 – z2|. Tìm GTLN, GTNN của P = |z – z0| với đặc điểm nhận dạng z0 = (z1 + z2)/2 + Bài toán 3. Elip không có dạng chính tắc, A không là trung điểm của F1F2 nhưng A nằm trên các trục của Elip [ads] ELIP SUY BIẾN Bài toán: Cho số phức z thoả mãn |z – z1| + |z – z2| = 2a nhưng có |z1 – z2| = 2a. Tìm GTLN, GTNN của T = |z – z0| GTLN-GTNN CỦA MÔ ĐUN SỐ PHỨC KHÔNG ELIP + Dạng 1: Tìm |z| hoặc z thoả mãn phương trình z.f(|z|) = g(|z|) nghĩa là phương trình bậc nhất ẩn z chứa |z| + Dạng 2: Cho |z1| = m, |z2| = n và |az1 + bz2| = p. Tính q = |cz1 + dz2| + Dạng 3. Cho số phức z thỏa mãn |z – z0| = R. Tìm GTLN của P = a|z – z1| + b|z – z2| biết rằng z0 – z1 = -k(z0 – z2) (k > 0) và a, b ∈ R + Dạng 4. Cho số phức z thõa mãn |z + z0/z| ≤ k (k > 0) hay dạng tương đương |z^2 + z0| ≤ k|z|, (k > 0). Tìm GTLN, GTNN của T = |z| + Dạng 5. Cho số phức z thỏa mãn |z1.z – z2 = k > 0. Tìm GTLN, GTNN của T = |z – z0| + Dạng 6. Cho số phức z thỏa mãn |z – z1| = |z – z2|. Tìm GTNN của T = |z – z0| + Dạng 7. Cho hai số phức z1, z2 thỏa mãn |z1 – z1*| = R và |z2 – z2*| = |z2 – z3*|, với z1*, z2* và z3* cho trước. Tìm GTNN của T = |z1 – z2| Lời kết : Các bài toán trên có thể giải bằng phương pháp đại số bằng cách rút một ẩn theo ẩn còn lại từ giả thiết để thay vào biểu thức cần đánh giá thành hàm số dạng T = f(x). Sau đó tìm GTLN, GTNN của trên miền xác định của f(x). Các đánh giá đảm bảo chặt chẽ cần chứng tỏ có đẳng thức (dấu “=”) xảy ra. Để tránh phức tạp vấn đề tôi không trình bày ở đây. Tuy nhiên các bài toán tổng quát đã nêu đều đảm bảo điều đó.
Hướng dẫn giải bài toán cực trị số phức - Lương Đức Trọng
Tài liệu gồm 12 trang được biên soạn bởi tác giả Lương Đức Trọng trình bày 2 phương pháp giải bài toán cực trị số phức – một dạng toán số phức vận dụng cao trong chương trình Giải tích 12 chương 4. Hai phương pháp được nói đến trong tài liệu đó là: + Phương pháp đại số. + Phương pháp hình học. Đây là lớp các bài toán vận dụng cao trong đề thi THPT Quốc gia môn Toán, để giải được dạng toán này, cần nắm vững các lý thuyết sau đây: Bất đẳng thức tam giác: + |z1 + z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≥ 0 + |z1 − z2| ≤ |z1| + |z2|, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 + z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≤ 0 + |z1 − z2| ≥ ||z1| − |z2||, dấu “=” khi z1 = kz2 với k ≥ 0 [ads] 2. Công thức trung tuyến: |z1 + z2|^2 + |z1 − z2|^2 = 2(|z1|^2 + |z2|^2) 3. Tập hợp điểm: + |z − (a + bi)| = r: Đường tròn tâm I(a; b) bán kính r + |z − (a1 + b1i)| = |z − (a2 + b2i)|: Đường trung trực của AB với A(a1; b1), B(a2; b2) + |z − (a1 + b1i)| + |z − (a2 + b2i)| = 2a: – Đoạn thẳng AB với A(a1; b1), B(a2; b2) nếu 2a = AB – Elip (E) nhận A, B làm hai tiêu điểm với độ dài trục lớn là 2a nếu 2a > AB Đặc biệt |z + c| + |z − c| = 2a: Elip (E) : x^2/a^2 + y^2/b^2 = 1 với b = √(a^2 − c^2)
Tìm nhanh tọa độ tâm và bán kính đường tròn trong bài toán tìm tập hợp điểm biểu diễn số phức - Đặng Thanh
Tài liệu gồm 5 trang tuyển tập công thức tìm nhanh tọa độ tâm và bán kính đường tròn trong bài toán tìm tập hợp điểm biểu diễn số phức. Nội dung tài liệu gồm phần trình bày công thức, chứng minh công thức và một số bài toán áp dụng có hướng dẫn giải. Hay có bao giờ bạn đặt câu hỏi rằng: Nếu trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn số phức z là đường tròn và với z1, z2 ∈ C thì tập hợp các điểm biểu diễn số phức w = z1.z + z2 là hình gì hay chưa? Liệu rằng nó có còn là một đường tròn hay không? Và nếu đúng tập hợp các điểm biểu diễn w là đường tròn thật thì tâm và bán kính của nó tính bằng cách nào cho nhanh? [ads] Chúng ta cùng nhau tìm hiểu kết quả nhé! Kết quả 1 : Cho z1 ∈ C, số phức z thỏa mãn |z – z1| = R. Tập hợp điểm biểu diễn số phức z là đường tròn (I1; R), trong đó I1 là điểm biểu diễn của số phức z1 trên mặt phẳng tọa độ Oxy. Kết quả 2 : Cho z1, z2 ∈ C, z2 ≠ 0, số phức z thỏa mãn |z – z1| = R. Khi đó ta có: + Tập hợp điểm biểu diễn số phức w1 = z.z2 là đường tròn, tâm là điểm biểu diễn của z1.z2, bán kính R.|z2| + Tập hợp điểm biểu diễn số phức w = z/z2 là đường tròn, tâm là điểm biểu diễn của z1/z2, bán kính R/|z2| + Tập hợp điểm biểu diễn số phức w3 = z + z2 là đường tròn, tâm là điểm biểu diễn của z1 + z2, bán kính R + Tập hợp điểm biểu diễn số phức w4 = z – z2 là đường tròn, tâm là điểm biểu diễn của z1 – z2, bán kính R Kết quả 3 : Cho z1, z2, z3 ∈ C, số phức z thỏa mãn |z – z1| = R. Khi đó: Tập hợp điểm biểu diễn số phức w = z2.z + z3 là một đường tròn, tâm là điểm biểu diễn của số phức z2.z1 + z3, bán kính |z2|.R
Công thức và thủ thuật tính nhanh bài toán cực trị số phức - Cao Văn Tuấn
Tài liệu gồm 8 trang tuyển tập công thức và thủ thuật tính nhanh bài toán cực trị số phức thông qua các ví dụ và bài tập có lời giải. Bài toán cơ bản : Cho số phức z thỏa mãn điều kiện (*) cho trước. Tìm giá trị lớn nhất, nhỏ nhất của |z|. Phương pháp chung : + Bước 1. Tìm tập hợp (H) các điểm biểu diễn số phức z thỏa mãn điều kiện (*) + Bước 2. Tìm số phức z tương ứng với điểm biểu diễn M ∈ (H) sao cho khoảng cách OM lớn nhất, nhỏ nhất [ads]