Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 thi Đại học năm 2019 - 2020 trường Hàm Rồng - Thanh Hóa

Chủ Nhật ngày 29 tháng 12 năm 2019, trường THPT Hàm Rồng, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn học theo khối thi Đại học năm học 2019 – 2020, nhằm giúp học sinh rèn luyện để hướng đến kỳ thi THPT Quốc gia năm 2020. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề KSCL Toán 12 thi Đại học năm 2019 – 2020 trường Hàm Rồng – Thanh Hóa, đề thi gồm có 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài là 90 phút. Trích dẫn đề KSCL Toán 12 thi Đại học năm 2019 – 2020 trường Hàm Rồng – Thanh Hóa : + Cho khối chóp tam giác đều. Nếu tăng độ dài cạnh đáy lên hai lần và giảm chiều cao đi bốn lần thì thể tích của khối chóp đó sẽ: A. Tăng lên hai lần. B. Giảm đi hai lần. C. Giảm đi ba lần. D. Không thay đổi. + Có một bể hình hộp chữ nhật chứa đầy nước. Người ta cho ba khối nón giống nhau có thiết diện qua trục là một tam giác vuông cân vào bể sao cho ba đường tròn đáy của ba khối nón tiếp xúc với nhau, một khối nón có đường tròn đáy chỉ tiếp xúc với một cạnh của đáy bể và hai khối nón còn lại có đường tròn đáy tiếp xúc với hai cạnh của đáy bể. Sau đó người ta đặt lên đỉnh của ba khối nón một khối cầu có bán kính bằng 4/3 lần bán kính đáy của khối nón. Biết khối cầu vừa đủ ngập trong nước và lượng nước trào ra là 337π/3 (cm3). Tính thể tích nước ban đầu ở trong bể. [ads] + Ông An cần xây một hồ chứa nước với dạng khối hộp chữ nhật không nắp có thể tích bằng 500/3 m3. Đáy hồ là hình chữ nhật có chiều dài gấp đôi chiều rộng. Giá thuê nhân công để xây hồ (gồm 4 bức tường xung quanh và đáy) là 500.000 đồng/m2. Khi đó, kích thước của hồ nước như thế nào để chi phí thuê nhân công mà ông An phải trả thấp nhất: A. Chiều dài 20 m, chiều rộng 10 m và chiều cao 5/6 m. B. Chiều dài 20 m, chiều rộng 15 m và chiều cao 20/3 m. C. Chiều dài 10 m, chiều rộng 5 m và chiều cao 10/3 m. D. Chiều dài 30 m, chiều rộng 15 m và chiều cao 10/27 m. + Gọi A là tập hợp tất cả các số tự nhiên gồm 4 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5, 6. Chọn ngẫu nhiên một số từ tập A. Tính xác suất để số chọn được là số chia hết cho 5. + Cho khối lăng trụ ABC.A’B’C’ có thể tích bằng 2019. Gọi M là trung điểm AA’; N, P lần lượt là các điểm nằm trên các cạnh BB’, CC’ sao cho BN = 2B’N, CP = 3C’P. Tính thể tích khối đa diện ABCMNP.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình (mã đề 105); hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Khẳng định nào sau đây sai? A. Đồ thị hàm số y = (1/2)x nhận trục hoành làm đường tiệm cận ngang. B. Hàm số y = 2^x và y = log2x đồng biến trên mỗi khoảng mà hàm số xác định. C. Hàm số y = log1/2x có tập xác định là (0;+vc). D. Đồ thị hàm số y = log2-1x nằm phía trên trục hoành. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0). Gọi (P) là mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại điểm C sao cho tứ diện OABC có thể tích bằng 1/6. Phương trình mặt phẳng (P) là? + Trong tập hợp các số phức, cho phương trình z3 + (1 – 2m)z2 + 2mz + 4m = 0 với tham số m thuộc R. Gọi S là tập hợp các giá trị của m để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập S bằng?
Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề khảo sát cuối năm lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng cuối năm môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Nam; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát cuối năm Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hà Nam : + Trên tập hợp số phức, xét phương trình 2 z 1 2z m (m là tham số thực). Gọi T là tập hợp tất cả các giá trị của m để phương trình trên có nghiệm z thỏa mãn z 3. Tổng các phần tử của T bằng? + Cho mặt cầu có bán kính S bằng 5. Mặt phẳng P cắt mặt cầu theo giao tuyến là đường tròn C có chu vi bằng. Xét 6 tứ diện có ABCD đáy là tam giác ABC đều nội tiếp đường tròn C còn di D chuyển trên mặt cầu. Giá trị lớn nhất của thể tích S khối tứ diện ABCD bằng? + Có tất cả bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn [0;2] không vượt quá 15?
Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 2023 sở GD ĐT Hải Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán lớp 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB. Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3. Tính diện tích tam giác SAB. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 4 4 0 S x y z x y và hai điểm A B 4 2 4 1 4 2. MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u = (0;1;1) và MN 4 2. Tính giá trị lớn nhất của AM BN. + Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả?