Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai

Thứ Tư ngày 22 tháng 12 năm 2021, sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức kỳ thi chọn học sinh giỏi lớp 12 cấp tỉnh môn Toán năm học 2021 – 2022. Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi chọn học sinh giỏi Toán 12 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho dãy số (un) xác định bởi u1 = 3 và n.u_n+1 = 2(n + 1)un – n – 2 với mọi n >= 1. a) Chứng minh rằng mọi số hạng của dãy đều là số nguyên. b) Chứng minh rằng với p là số nguyên tố lẻ bất kỳ, luôn tồn tại hai số hạng liên tiếp của dãy là bội của p. + Cho tam giác ABC nhọn, có AB < BC, nội tiếp đường tròn (O), hai đường cao AE và CF cắt nhau tại H (với E thuộc BC, F thuộc AB). Gọi M là trung điểm của cạnh AC. Tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại Z. Gọi X là giao điểm của ZA và EF, Y là giao điểm của ZC và EF. Đường tròn ngoại tiếp tam giác BEF cắt đường tròn (O) tại điểm D (D khác B). a) Chứng minh rằng ba điểm M, H và D thẳng hàng. b) Chứng minh rằng bốn điểm D, X, Z và Y cùng nằm trên một đường tròn. + Trong một tòa nhà có một số phòng nào đó, trong mỗi phòng có một bóng đèn và một công tắc, công tắc ở mỗi phòng được nối với một số phòng nào đó. Khi ta bấm công tắc tại một phòng thì sẽ làm thay đổi trạng thái của bóng đèn trong phòng đó và các phòng được nối với công tắc này (bóng đang sáng sẽ tắt còn bóng đang tắt sẽ sáng). Chứng minh rằng, nếu ban đầu tất cả các bóng đèn đều tắt thì sau một số hữu hạn lần bấm công tắt sẽ làm cho tất cả các bóng đèn đều sáng.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển HSG Toán THPT năm 2020 - 2021 sở GDĐT TP HCM
Ngày 20 và 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn đội tuyển học sinh giỏi Toán THPT năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 04 bài toán, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán THPT năm 2020 – 2021 sở GD&ĐT TP HCM : + Cho tam giác ABC nhọn không cân, nội tiếp đường tròn (O), có đường tròn nội tiếp (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Tia AI cắt các đường thẳng DE, DF lần lượt tại X, Y. Đường tròn tâm M đường kính XY cắt BC tại các điểm S, T. a) Chứng minh rằng tiếp tuyến tại X, Y của đường tròn (DXY) cắt nhau trên đường cao qua đỉnh A của tam giác ABC và AX.AY = AS.AT. b) Chứng minh rằng đường tròn (MST) tiếp xúc với hai đường tròn (O) và (I). + Cho n là số nguyên dương thỏa mãn a(n) (hàm Euler) là lũy thừa của 2. a) Chứng minh rằng mọi ước nguyên tố lẻ (nếu có) của n đều có dạng 2^n + 1 với k thuộc N. b) Tìm n biết rằng n là số hoàn hảo (số hoàn hảo là số bằng với tổng các ước nguyên dương nhỏ hơn nó). + Bàn cờ vua “kỳ quặc” cũng là một hình vuông 8 x 8 nhưng vị trí các ô đen trắng không giống bàn cờ vua thông thường mà được sắp xếp thỏa mãn điều kiện: số ô đen trong mỗi cột bằng nhau và số ô đen trong mỗi hàng đôi một khác nhau. a) Hỏi số ô đen và số ô trắng trong bàn cờ vua “kỳ quặc” có bằng nhau hay không? b) Hỏi trong bàn cờ vua “kỳ quặc” có thể có tối đa bao nhiêu cặp ô có chung cạnh và khác màu?
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Thái Nguyên
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Thái Nguyên gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Tìm tất cả các hàm số f: R → R thỏa mãn điều kiện: f(x + f(y)) = 4f(x) + f(y) – 3x với mọi x, y thuộc R. + Cho đa thức P(x) = x^2 + ax + b với a, b là các số nguyên. Biết rằng với mọi số nguyên tố p, luôn tồn tại số nguyên k để P(k) và P(k + 1) đều chia hết cho p. Chứng minh rằng tồn tại số nguyên m để P(m) = P(m + 1) = 0. + Với mỗi số nguyên dương x, kí hiệu s(x) là số chính phương lớn nhất không vượt quá x. Cho dãy số (an) được xác định bởi a1 = p (p là số nguyên dương) và a_n+1 = 2an – s(an) với mọi n >= 1. Tìm tất cả các số nguyên dương p để dãy số (an) bị chặn.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Ninh Bình
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút; kỳ thi diễn ra vào ngày 28 tháng 10 năm 2020. Trích dẫn đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Ninh Bình : + Tìm tất cả các cặp số nguyên tố (p;q) sao cho p^2 + 3pq + q^2 là một số chính phương. + Cho đường tròn (O;R) tiếp xúc với đường thẳng d tại điểm T cho trước. Một điểm M di động trên (O), tiếp tuyến của (O) tại M cắt d tại P. Gọi (C) là đường tròn tâm J đi qua M và tiếp xúc với d tại P và I là điểm đối xứng với P qua J. 1. Chứng minh OI = IP và (C) tiếp xúc với một đường tròn cố định. 2. Tìm quỹ tích tâm J của đường tròn (C) khi M di động trên (O). + Trong mặt phẳng cho n điểm phân biệt và m đường thẳng phân biệt. Gọi k là số bộ (A;a) sao cho A thuộc a với A là một trong các điểm đã cho và a là một trong các đường thẳng đã cho. 1. Tìm giá trị lớn nhất của k với n = 6 và m = 5. 2. Với n = 66 và m = 16, chứng minh k =< 159.
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Hưng Yên
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 03 bài toán, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 09 và 10 tháng 09 năm 2020.