Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 12 năm 2022 - 2023 trường THPT Hàm Rồng - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 trường THPT Hàm Rồng, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án mã đề 652 740 420 007. Trích dẫn Đề học sinh giỏi Toán 12 năm 2022 – 2023 trường THPT Hàm Rồng – Thanh Hóa : + Bạn Nam có một hộp bi gồm 2 viên bi màu đỏ và 4 viên bi màu trắng. Bạn Định cũng có một hộp bi giống như của bạn Nam. Từ hộp của mình, mỗi bạn chọn ngẫu nhiên 3 viên bi. Xác suất để trong các viên bi được chọn luôn có bi màu đỏ và số bi đỏ của hai bạn bằng nhau là? + Một công ty mỹ phẩm chuẩn bị ra một mẫu sản phẩm dưỡng da mới mang tên Ngọc Trai với thiết kế một khối cầu như viên ngọc trai, bên trong là một khối trụ nằm trong nửa khối cầu để dựng kem dưỡng. Theo dự kiến, nhà sản xuất có dự định để khối cầu có bán kính là R 3 3 cm. Tính thể tích lớn nhất của khối trụ đựng kem để thể tích thực ghi trên bìa hộp là lớn nhất (với mục đích thu hút khách hàng). + Cho tập hợp A gồm n phần tử (n >= 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20 lần số tập con gồm 2 phần tử của A. Biết rằng k là số tự nhiên trong các số từ 1 đến n thỏa mãn số tập con gồm k phần tử của A là lớn nhất. Số k thuộc khoảng nào sau đây?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi tỉnh Toán 12 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 13 tháng 12 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được biên soạn bởi Nhóm Toán VDC & HSG THPT. Trích dẫn Đề học sinh giỏi tỉnh Toán 12 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho hàm số 3 2 yx m x m x m 2 1 31 22 có đồ thị là (Cm). Tìm tất cả các giá trị tham số m để (Cm) cắt trục hoành tại 3 điểm phân biệt A(2;0), B và C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn 2 2 Cx y 1. + Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Gọi M N lần lượt là trung điểm của SA và BC. Biết AB a và MN tạo với mặt đáy một góc 60°. Tính thể tích khối chóp S ABC theo a. + Cho hàm số f x xác định, liên tục trên R và thoả mãn fx x x cot sin 2 cos 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số gx f xf x trên đoạn [−1;1].
Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 - 2023 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; đề thi gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 180 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi Diễn Đàn Giáo Viên Toán). Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho mặt cầu (S) có tâm O và A là một điểm nằm trên (S). Gọi I K là hai điểm trên đoạn OA sao cho OI IK KA. Các mặt phẳng (P), (Q) lần lượt đi qua I, K cùng vuông góc với OA và cắt mặt cầu (S) theo các đường tròn có bán kính lần lượt là 1r và 2r. Tính tỷ số 2 1 r r. + Cho hình trụ có đáy là hai đường tròn tâm O và tâm O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy hai điểm A D sao cho AD a 15; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn tâm (O’); trên đường tròn tâm (O’) lấy điểm B (AB CD chéo nhau). Đặt α là góc giữa AB với đáy. Tính tanα khi thể tích khối tứ diện ABCD đạt giá trị lớn nhất. + Cho hình vuông kích cỡ 4 x 4 như hình vẽ. Sắp xếp ngẫu nhiên các số tự nhiên từ 1 đến 16 vào 16 ô vuông. Tính xác suất để có tổng bốn số ở các ô trong cùng một hàng hay cùng một cột đều là một số lẻ.