Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình, bất phương trình và hệ phương trình chứa tham số - Lê Bá Bảo

Tài liệu tóm tắt các dạng toán điển hình, các ví dụ mẫu có lời giải chi tiết và phần bài tập rèn luyện chủ đề phương trình, bất phương trình và hệ phương trình chứa tham số, do tác giả Lê Bá Bảo biên soạn. I – LÝ THUYẾT Một số dạng toán và phương pháp tương ứng: Cho hàm số f(x) liên tục trên tập D. Giả sử trên D tồn tại min f(x); max f(x), nếu không ta cần lập bảng biến thiên và đưa ra kết luận. + Dạng 1: Phương trình f(x) = m có nghiệm x ∈ D + Dạng 2: Bất phương trình f(x) ≤ m có nghiệm x ∈ D + Dạng 3: Bất phương trình f(x) ≤ m nghiệm đúng ∀x ∈ D + Dạng 4: Bất phương trình f(x) ≥ m có nghiệm x ∈ D + Dạng 5: Bất phương trình f(x) ≥ m nghiệm đúng ∀x ∈ D + Dạng 6: Cho hàm số y = f(x) đơn điệu trên tập D. Khi đó f(u) = f(v) ⇔ u = v [ads] THUẬT TOÁN : Để giải các bài toán tìm giá trị tham số m để phương trình (PT), bất phương trình (BPT) có nghiệm ta có thể thực hiện theo các bước sau: Thuật toán 1: Đối với bài toán không cần đặt ẩn phụ + Bước 1: Biến đổi đưa phương trình về dạng f(x) = g(m) (hoặc f(x) ≥ g(m); hoặc f(x) ≤ g(m)) + Bước 2: Lập bảng biến thiên của hàm số y = f(x) có tập xác đinh D, suy ra min f(x), max f(x) nếu có + Bước 3: Sử dụng các nhận xét và phương pháp giải phương trình, bất phương trình, đưa ra kết luận Thuật toán 2: Đối với bài toán đặt ẩn phụ + Bước 1: Đặt ẩn phụ t = φ(x). Từ điều kiện ràng buộc của x suy ra miền giá trị t = φ(x). Giả sử: ∀x ∈ D ⇒ t ∈ X + Bước 2: Lúc này, biến đổi đưa phương trình về dạng f(t) = h(m) (hoặc f(t) ≥ h(m) hoặc f(t) ≤ h(m)). Lúc này biện luận điều kiện có nghiệm của phương trình f(t) = h(m) với t ∈ X. Các bước còn lại tương tự thuật toán 1 Với hệ phương trình có chứa tham số, tư duy, hoặc là dựa vào điều kiện có nghiệm của các dạng hệ đặc thù, hoặc đưa về phương trình chứa 1 ẩn (có thể là ẩn phụ) vầ xét điều kiện có nghiệm trên miền giá trị của ẩn (hoặc ẩn phụ) đó. II – CÁC BÀI TẬP MINH HOẠ III – BÀI TẬP TỰ LUYỆN

Nguồn: toanmath.com

Đọc Sách

Phương trình có chứa hàm hợp
Tài liệu chuyên đề phương trình có chứa hàm hợp gồm 245 trang được biên soạn bởi các tác giả Vũ Hồng Phong (Giáo viên Toán trường THPT Tiên Du số 1 – Bắc Ninh) và Trần Văn Lâm (Tân Phú – Thái Nguyên), giúp các bạn học sinh tham khảo trong quá trình ôn thi HSG môn Toán. Tài liệu được đăng tải trong chuyên mục Phương Pháp Giải Toán trên tạp chí Toán Học và Tuổi Trẻ số 503 (tháng 05 năm 2019) và số 504 (tháng 06 năm 2019).
Tài liệu tự học bất đẳng thức và bất phương trình - Trần Quốc Nghĩa
Nhằm giúp các em học sinh khối lớp 10 học tốt chương trình Đại số 10 chương 4, giới thiệu đến các em tài liệu tự học bất đẳng thức và bất phương trình do thầy Trần Quốc Nghĩa biên soạn. Tài liệu gồm 108 trang với đầy đủ lý thuyết, dạng toán và bài tập các chủ đề: bất đẳng thức, GTLN – GTNN (min – max), dấu của nhị thức bậc nhất, dấu của tam thức bậc hai, bất phương trình, hệ bất phương trình. Khái quát nội dung tài liệu tự học bất đẳng thức và bất phương trình – Trần Quốc Nghĩa: PHẦN 1 . BẤT ĐẲNG THỨC CHỦ ĐỀ 1 . BẤT ĐẲNG THỨC + Dạng 1. Chứng minh bất đẳng thức dựa vào định nghĩa và tính chất. + Dạng 2. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy (AM – GM). + Dạng 3. Chứng minh bất đẳng thức dựa vào bất đẳng thức Cauchy – Schwarz. + Dạng 4. Chứng minh bất đẳng thức dựa vào bất đẳng thức C.B.S. + Dạng 5. Chứng minh bất đẳng thức dựa vào tọa độ vectơ. + Dạng 6. Bất đẳng thức về giá trị tuyệt đối. + Dạng 7. Sử dụng phương pháp làm trội. + Dạng 8. Ứng dụng bất đẳng thức để giải phương trình, hệ phương trình, bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 1 CHỦ ĐỀ 2 . GIÁ TRỊ LỚN NHẤT – GIÁ TRỊ NHỎ NHẤT + Dạng 1. Dùng tam thức bậc hai. + Dạng 2. Dùng bất đẳng thức Cauchy. + Dạng 3. Dùng bất đẳng thức C.B.S. + Dạng 4. Dùng bất đẳng thức chứa dấu giá trị tuyệt đối. + Dạng 5. Dùng tọa độ vectơ. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 2 PHẦN 2 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH CHỦ ĐỀ 3 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN + Dạng 1. Tìm điều kiện xác định của bất phương trình. + Dạng 2. Bất phương trình tương đương. + Dạng 3. Giải bất phương trình bậc nhất một ẩn. + Dạng 4. Giải hệ bất phương trình bậc nhất một ẩn. + Dạng 5. Bất phương trình, hệ bất phương trình bậc nhất một ẩn chứa tham số. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 CHỦ ĐỀ 4 . DẤU CỦA NHỊ THỨC BẬC NHẤT BẤT PHƯƠNG TRÌNH QUI VỀ BẤT PHƯƠNG TRÌNH BẬC 1 MỘT ẨN + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình tích. + Dạng 3. Giải bất phương có ẩn ở mẫu. + Dạng 4. Dấu nhị thức trên một miền. + Dạng 5. Giải phương trình, bất phương trình chứa dấu giá trị tuyệt đối. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 4 CHỦ ĐỀ 5 . BẤT PHƯƠNG TRÌNH HỆ BẤT PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN + Dạng 1. Bất phương trình bậc nhất hai ẩn. + Dạng 2. Hệ bất phương trình bậc nhất hai ẩn. + Dạng 3. Một ví dụ áp dụng vào kinh tế. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 5 CHỦ ĐỀ 6 . DẤU CỦA TAM THỨC BẬC HAI BẤT PHƯƠNG TRÌNH BẬC HAI + Dạng 1. Xét dấu biểu thức. + Dạng 2. Giải bất phương trình bậc hai. + Dạng 3. Giải bất phương trình tích, thương. + Dạng 4. Giải hệ bất phương bậc hai. + Dạng 5. Phương trình và bất phương trình chứa dấu giá trị tuyệt đối. + Dạng 6. Phương trình và bất phương trình chứa căn thức. + Dạng 7. Bài toán chứa tham số trong phương trình và bất phương trình. BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 6 PHẦN 3 . TRÍCH ĐỀ THI ĐẠI HỌC – CAO ĐẲNG + Bất đẳng thức. + Bất phương trình có chứa giá trị tuyệt đối. + Bất phương trình có chứa căn thức.
Sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7) - Lương Tuấn Đức
Tài liệu gồm 128 trang hướng dẫn sử dụng hàm số thuần giải hệ chứa căn (hệ chứa căn phần 7), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số, các phép ước lượng – đánh giá – bất đẳng thức. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các thao tác tính toán và kỹ năng trình bày cơ bản đối với phương trình, hệ phương trình xin không nhắc lại. KIẾN THỨC CHUẨN BỊ : 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kỹ năng giải hệ phương trình cơ bản và hệ phương trình đối xứng, hệ phương trình đồng bậc, hệ phương trình chứa căn thông thường. 6. Kỹ thuật đặt ẩn phụ, sử dụng đại lượng liên hợp, biến đổi tương đương. 7. Kiến thức nền tảng về uớc lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị. [ads] NỘI DUNG CHỦ ĐẠO : KẾT HỢP SỬ DỤNG PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ GIẢI HỆ PHƯƠNG TRÌNH CHỨA CĂN THỨC + PHỐI HỢP PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ. + SỬ DỤNG TÍNH CHẤT ĐƠN ĐIỆU HÀM SỐ. + SỬ DỤNG KẾT HỢP ĐÁNH GIÁ – BẤT ĐẲNG THỨC. + TỔNG HỢP CÁC PHÉP GIẢI PHƯƠNG TRÌNH CHỨA CĂN. + BÀI TOÁN NHIỀU CÁCH GIẢI.
Sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8) - Lương Tuấn Đức
Tài liệu gồm 132 trang hướng dẫn sử dụng hàm số chặn miền giá trị giải hệ chứa căn (hệ chứa căn phần 8), tài liệu được biên soạn bởi thầy Lương Tuấn Đức, tài liệu chủ yếu giới thiệu đến quý bạn đọc Lý thuyết giải hệ phương trình chứa căn ở cấp độ cao, trình bày chi tiết các thí dụ điển hình về hệ giải được nhờ sử dụng tổng hợp các phép thế, phép cộng đại số, đại lựợng liên hợp, sử dụng đồng bộ tính chất đơn điệu hàm số có chặn miền giá trị, các phép ước lượng – đánh giá – bất đẳng thức phần tiếp theo. Đây là nội dung có mức độ khó tương đối, đòi hỏi các bạn độc giả cần có kiến thức vững chắc về các phép giải phương trình chứa căn, kỹ năng biến đổi đại số và tư duy chiều sâu bất đẳng thức. Các nội dung chủ đạo được đề cập trong tài liệu: + KẾT HỢP SỬ DỤNG PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ (TIẾP THEO) GIẢI HỆ PHƯƠNG TRÌNH CHỨA CĂN THỨC. + PHỐI HỢP PHÉP THẾ, CỘNG ĐẠI SỐ VÀ ẨN PHỤ. + SỬ DỤNG TÍNH CHẤT ĐƠN ĐIỆU HÀM SỐ. + SỬ DỤNG KẾT HỢP ĐÁNH GIÁ – BẤT ĐẲNG THỨC. + TỔNG HỢP CÁC PHÉP GIẢI PHƯƠNG TRÌNH CHỨA CĂN. + BÀI TOÁN NHIỀU CÁCH GIẢI.