Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Sơ đồ tư duy lớp 9 môn Toán

Nội dung Sơ đồ tư duy lớp 9 môn Toán Bản PDF - Nội dung bài viết Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu giới thiệu bộ Sơ đồ tư duy Toán lớp 9: Đại số 9 và Hình học 9 Sytu xin giới thiệu đến quý độc giả bộ sơ đồ tư duy Toán lớp 9, bao gồm cả Đại số 9 và Hình học 9. Học Toán thông qua sơ đồ tư duy là một phương pháp học tập hiện đại, giúp học sinh dễ dàng ghi nhớ và hiểu sâu hơn về các kiến thức Toán. Những kiến thức Toán lớp 9 được biểu diễn trong các hình ảnh sinh động, giúp học sinh nhận ra mối quan hệ logic giữa chúng. Bộ sơ đồ tư duy Toán lớp 9 bao gồm nhiều chủ đề, bao gồm: Sơ đồ tư duy về căn bậc hai và căn bậc ba Sơ đồ tư duy về hàm số Sơ đồ tư duy về tam giác Sơ đồ tư duy về tứ giác Sơ đồ tư duy về đường tròn Qua bộ sơ đồ tư duy Toán lớp 9, học sinh sẽ tiếp cận môn Toán một cách mạch lạc, thú vị hơn, từ đó nâng cao hiệu suất học tập của mình và phát triển tư duy logic và sáng tạo trong việc giải quyết các bài toán. Hãy cùng Sytu trải nghiệm bộ sơ đồ tư duy độc đáo này để khám phá vẻ đẹp và logic của môn Toán!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề giải hệ phương trình bậc nhất hai ẩn
Tài liệu gồm 41 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải hệ phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 3 – 4. A. KIẾN THỨC TRỌNG TÂM a. Phương pháp thế. + Bước 1: Từ một phương trình của hệ, ta biểu thị ẩn x theo y (hoặc y theo x). + Bước 2: Thế biểu thức tìm được của x (hoặc của y) vào phương trình còn lại để được phương trình bậc nhất một ẩn. Giải phương trình bậc nhất vừa tìm được. + Bước 3: Thay giá trị vừa tìm được của ẩn vào biểu thức tìm được trong bước thứ nhất để tìm giá trị của ẩn còn lại. b. Phương pháp cộng đại số. + Bước 1: Chọn ẩn muốn khử, thường là x (hoặc y). + Bước 2: + + Xem xét hệ số của ẩn muốn khử. + + Khi các hệ số của cùng một ẩn đối nhau thì ta cộng vế theo vế của hệ. + + Khi các hệ số của cùng một ẩn bằng nhau thì ta trừ về theo vế của hệ. + + Nếu các hệ số đó không bằng nhau thì ta nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của x (hoặc y) trong hai phương trình của hệ là bằng nhau hoặc đối nhau (đồng nhất hệ số). Rồi thực hiện các bước ở trên. + + Ta được một phương trình mới, trong đó ẩn muốn khử có hệ số bằng 0. + Bước 3: Giải hệ phương trình gồm một phương trình mới (một ẩn) và một phương trình đã cho. B. CÁC DẠNG TOÁN Dạng 1. Giải hệ phương trình bằng phương pháp thế. Dạng 2. Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3. Sử dụng phương pháp đặt ẩn phụ. Dạng 4. Một số bài toán liên quan. C. BÀI TẬP TỰ LUYỆN
Chuyên đề hệ hai phương trình bậc nhất hai ẩn
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề hệ hai phương trình bậc nhất hai ẩn, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 3 bài số 2. A. KIẾN THỨC TRỌNG TÂM 1. Hệ hai phương trình bậc nhất hai ẩn. 2. Minh họa hình học tập nghiệm của hệ hai phương trình bậc nhất hai ẩn. 3. Hệ phương trình tương đương. B. CÁC DẠNG BÀI MINH HỌA Dạng 1: Đoán nhận số nghiệm của hệ phương trình. Dạng 2: Giải hệ phương trình bằng phương pháp hình học. Dạng 3: Hai hệ phương trình tương đương. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đồ thị hàm số y ax + b (a khác 0)
Tài liệu gồm 46 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đồ thị hàm số y = ax + b (a khác 0), hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 3. A. KIẾN THỨC CẦN NHỚ 1. Đồ thị hàm số bậc nhất. 2. Cách vẽ đồ thị của hàm số bậc nhất. 3. Chú ý. B. CÁC DẠNG BÀI TẬP MINH HỌA Dạng 1: Vẽ đồ thị hàm số bậc nhất. Dạng 2: Tìm tham số m để hàm số là hàm số bậc nhất, đồng biến, nghịch biến. Dạng 3 : Xét tính đồng quy của ba đường thẳng. Dạng 4: Tìm điểm cố định của đường thẳng phụ thuộc tham số. Dạng 5: Tính chu vi và diện tích tam giác. C. TRẮC NGHIỆM RÈN PHẢN XẠ
Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Tài liệu gồm 25 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường thẳng song song và đường thẳng cắt nhau, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. B. CÁC DẠNG MINH HỌA Dạng 1 : Xét vị trí tương đối của hai đường thẳng. Phương pháp giải: Cho hai đường thẳng: d: y = ax + b với a khác 0 và d’: y = a’x + b’ với a’ khác 0, khi đó ta có: 1. d và d’ song song khi và chỉ khi a = a’ và b khác b’. 2. d và d’ trùng nhau khi và chỉ khi a = a’ và b = b’. 3. d và d’ cắt nhau khi và chỉ khi a khác a’ . Đặc biệt d và d’ vuông góc với nhau khi và chỉ khi a.a’ = -1. Dạng 2 : Xác định phương trình đường thẳng. Phương pháp giải: Để xác định phương trình đường thẳng, ta thường làm như sau: Bước 1: Gọi d: y = ax + b là phương trình đường thẳng cần tìm (a và b là hằng số). Bước 2: Từ giả thiết của đề bài, tìm được a và b từ đó đi đến kết luận. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN