Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL giữa kỳ 1 Toán 8 năm 2020 - 2021 trường THCS Trần Mai Ninh - Thanh Hóa

Đề KSCL giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề KSCL giữa kỳ 1 Toán 8 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa : + Cho hình chữ nhật DEKH có O là giao điểm của hai đường chéo. Lấy một điểm I nằm giữa hai điểm O và E. Gọi N là điểm đối xứng với điểm D qua I và M là trung điểm của KN. a) Chứng minh tứ giác OINK là hình thang và tứ giác OIMK là hình bình hành. b) Gọi A và B lần lượt là hình chiếu của N trên các đường thẳng EK và KH. Chứng minh tứ giác AKBN là hình chữ nhật. c) Chứng minh bốn điểm I, A, M, B thẳng hàng. + Tìm giá trị nhỏ nhất của biểu thức: P = 5×2 + 4xy – 6x + y2 + 2030. + Chứng minh rằng a5 – 5a3 + 4a chia hết cho 120 với mọi số nguyên a.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa
Nội dung Đề KSCL mũi nhọn lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Nông Cống Thanh Hóa Bản PDF - Nội dung bài viết Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Đề Kiểm Tra Chất Lượng Mũi Nhọn Lớp 8 Toán Năm 2021-2022 Xin chào quý thầy cô và các em học sinh lớp 8! Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng mũi nhọn học sinh lớp 8 cấp huyện môn Toán cho năm học 2021-2022 của phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa. Trích dẫn đề KSCL mũi nhọn Toán lớp 8 năm 2021-2022 phòng GD&ĐT Nông Cống - Thanh Hóa: 1. Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (với n thuộc tập số tự nhiên) đều là các số chính phương thì n phải chia hết cho 40. 2. Cho O là trung điểm của đoạn thẳng AB. Trên cùng một nửa mặt phẳng có bờ là đường thẳng chứa cạnh AB, vẽ tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vuông góc với OC cắt tia By tại D. Chứng minh: AB2 = 4AC.BD. Kẻ OM vuông góc với CD tại M. Chứng minh: AC = CM. Từ M kẻ MH vuông góc với AB tại H. Chứng minh BC đi qua trung điểm của đoạn thẳng MH. Tìm vị trí của điểm C trên tia Ax để diện tích tứ giác ABDC nhỏ nhất. 3. Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1. Hãy tìm giá trị nhỏ nhất của biểu thức M. Mong rằng đề kiểm tra này sẽ giúp các em rèn luyện kiến thức và kỹ năng giải bài toán một cách thành thạo. Chúc các em thành công!