Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Yên Bái

Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Yên Bái Đề tuyển sinh THPT môn Toán năm 2022 - 2023 sở GD ĐT Yên Bái Chào mừng quý thầy cô giáo và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến các bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái. Đề thi mã đề 008 bao gồm 04 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm. Thời gian làm bài thi là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi: Cho đường tròn (O) đường kính AB = 2/3cm và C là điểm chính giữa của cung AB. Cung AmB có tâm C và bán kính CA. Diện tích phần gạch chéo là bao nhiêu? Từ hai vị trí A và B của một tòa nhà, người ta dùng dụng cụ quan sát đỉnh C của ngọn núi. Chiều cao AB của tòa nhà là 70m, phương nhìn AC tạo góc 30 độ với phương ngang, phương nhìn BC tạo góc 15 độ 30 phút với phương ngang. Ngọn núi có chiều cao so với mặt đất cao nhất là bao nhiêu? Cho hình bình hành ABCD (A > 90°). Gọi M, N, P lần lượt là hình chiếu của C lên AD, DB và AB. Biết MN = 5 và NP = 4. Độ dài CN gần với kết quả nào sau đây nhất? Mong rằng đề thi này sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Cà Mau
Nội dung Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Cà Mau Bản PDF Đề thi vào lớp 10 chuyên môn Toán (không chuyên) năm 2021-2022 của sở GD&ĐT Cà MauSytu xin gửi đến quý thầy cô và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021-2022 của sở GD&ĐT Cà Mau. Đề thi bao gồm đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi trong đề thi:1. Anh Sơn và chị Hà đặt mục tiêu mỗi ngày phải đi bộ ít nhất 6000 bước. Nếu cùng đi trong 2 phút, anh Sơn bước nhiều hơn chị Hà 20 bước. Nếu chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bước tối thiểu của mục tiêu?2. Tìm giá trị của tham số m sao cho phương trình \(2x^2 - mx + 7 = 0\) có nghiệm. Tìm giá trị của m để phương trình đã cho có hai nghiệm âm phân biệt.3. Trong tam giác nhọn ABC có AB và AC đều tiếp xúc với đường tròn tâm O. Hai tiếp tuyến tại B và C cắt nhau tại M, tia AM cắt đường tròn tại D. Hãy chứng minh rằng tứ giác OBMC nội tiếp, và \(2MB \cdot MD = MA\). Gọi E là trung điểm của AD, tia CE cắt đường tròn tại F. Chứng minh rằng \(BF = AM\).Nếu quý thầy cô quan tâm và muốn xem đầy đủ nội dung của đề thi, vui lòng tải file Word tại đường link sau: [link](#).Mong rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Phú Thọ
Nội dung Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Phú Thọ Bản PDF Sytu xin gửi đến các thầy cô và các bạn học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 của sở GD&ĐT Phú Thọ. Đề thi không chỉ cung cấp đáp án và lời giải chi tiết mà còn hướng dẫn cách chấm điểm.Trong đề thi, có nhiều câu hỏi đa dạng từ giải phương trình đến hình học, từ tính chất tứ giác đến bài toán tối ưu. Ví dụ, trong một câu hỏi, học sinh cần giải hệ phương trình có tham số và tìm điều kiện để hệ phương trình có nghiệm duy nhất. Trên đường tròn, học sinh phải chứng minh tính chất của các điểm và đường tròn, từ đó suy luận ra điều cần chứng minh. Một câu hỏi khác đưa ra biểu thức và yêu cầu tìm giá trị lớn nhất, đòi hỏi học sinh áp dụng kiến thức để giải bài toán tối ưu.Đề thi được trình bày đầy đủ và chi tiết, giúp học sinh hiểu rõ yêu cầu và cách giải quyết từng bài toán. Các thầy cô và phụ huynh cũng có thể sử dụng đề thi này để hướng dẫn và kiểm tra kiến thức của các em. Đây thực sự là một tài liệu hữu ích cho việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh sắp tới. File WORD gửi đến quý thầy cô để tiện lợi cho việc in và sử dụng. Hy vọng rằng đề thi sẽ giúp các em học sinh rèn luyện kỹ năng giải bài toán và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!
Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Phú Yên
Nội dung Đề thi tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Phú Yên Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Phú Yên Đề thi tuyển sinh môn Toán năm 2021 - 2022 sở GD&ĐT Phú Yên Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 của sở GD&ĐT Phú Yên. Đề thi bao gồm câu hỏi trắc nghiệm và lời giải chi tiết cho các bài tự luận. Một số trích dẫn từ đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GD&ĐT Phú Yên: + (Chi tiết câu hỏi)
Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Yên Bái
Nội dung Đề thi tuyển sinh vào môn Toán năm 2021 2022 sở GD ĐT Yên Bái Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Yên Bái Đề thi tuyển sinh vào môn Toán năm 2021-2022 sở GD&ĐT Yên Bái Ngày 10 tháng 06 năm 2021, Sở Giáo dục và Đào tạo tỉnh Yên Bái đã tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán cho năm học 2021 – 2022. Đề thi được mã hoá là 014 và được biên soạn dưới dạng trắc nghiệm 100%. Đề bao gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài là 90 phút. Đề thi có đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: Gọi S là tập hợp tất cả các giá trị của m để đường thẳng y = mx + m² - 1 cắt trục tung và trục hoành lần lượt tại hai điểm phân biệt A và B sao cho AOB là một tam giác cân. Tổng các phần tử của tập hợp S bằng bao nhiêu? Để đo chiều cao AB của một bức tường, người ta đặt hai cọc thẳng đứng vuông góc với mặt đất và sợi dây FC như hình vẽ. Khi đó, chiều cao của bức tường bằng bao nhiêu? Cho hai đường tròn (O; 4 cm) và (O'; 6 cm) tiếp xúc ngoài, PQ là tiếp tuyến chung ngoài của hai đường tròn đó (P; Q là hai tiếp điểm). Độ dài của đoạn thẳng PQ bằng bao nhiêu? Để xem đầy đủ nội dung của đề thi, vui lòng tải file WORD tại đây.