Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Phú Thọ

Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Phú Thọ Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019 - 2020 môn Toán sở GD ĐT Phú Thọ Đề tuyển sinh THPT năm 2019 - 2020 môn Toán sở GD ĐT Phú Thọ Kỳ thi tuyển sinh vào lớp 10 khối Trung học Phổ thông do sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức được coi là một trong những kỳ thi quan trọng nhất đối với học sinh trên địa bàn tỉnh. Đây là bước đánh dấu quá trình tốt nghiệp khối Trung học Cơ sở và là cơ sở để xét tuyển học sinh vào các trường Trung học Phổ thông trong tỉnh Phú Thọ. Môn thi quan trọng và bắt buộc trong kỳ thi này chính là môn Toán. Để giúp quý thầy cô, phụ huynh và các em học sinh hiểu rõ hơn về đề thi tuyển sinh vào lớp 10 Trung học Phổ thông năm 2019 - 2020 môn Toán của sở GD&ĐT Phú Thọ, chúng tôi xin giới thiệu nội dung và lời giải chi tiết của đề thi. Trích đề tuyển sinh lớp 10 THPT năm 2019 - 2020 môn Toán sở GD&ĐT Phú Thọ: - Lớp 9A và lớp 9B của một trường THCS dự định làm 90 chiếc đèn ông sao để tặng các em thiếu nhi nhân dịp Tết Trung Thu. Nếu lớp 9A làm trong 2 ngày và lớp 9B làm trong 1 ngày thì được 23 chiếc đèn; nếu lớp 9A làm trong 1 ngày và lớp 9B làm trong 2 ngày thì được 22 chiếc đèn. Hỏi nếu cả hai lớp cùng làm thì hết bao nhiêu ngày để hoàn thành công việc? - Từ một tấm tôn hình chữ nhật có chiều dài bằng 2 (m), chiều rộng bằng 1 (m) gò thành mặt xung quanh của một hình trụ có chiều cao 1 (m), (hai cạnh chiều rộng của hình chữ nhật sau khi gò trùng khít nhau). Thể tích của hình trụ đó bằng bao nhiêu? - Cho tứ giác ABCD nội tiếp đường tròn đường kính AC. Biết góc DBC = 55 độ, số đo ACD bằng bao nhiêu? Trong các câu hỏi trên, quy trình giải và cách tiếp cận vấn đề sẽ được thể hiện chi tiết để giúp các em học sinh hiểu rõ hơn và chuẩn bị tốt cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Quảng Ninh
Nội dung Đề tuyển sinh vào môn Toán năm 2022 2023 sở GD ĐT Quảng Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Quảng Ninh Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Quảng Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Quảng Ninh. Đề thi sẽ diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Đề thi gồm các câu hỏi sau: Đội I và đội II cùng làm một công việc trong 12 ngày. Nếu làm riêng, đội II hơn đội I 10 ngày. Hỏi mỗi đội cần bao nhiêu ngày để hoàn thành công việc khi làm riêng? Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M thuộc cung nhỏ BC (M khác B, M khác C), AM và CD cắt nhau tại E. Chứng minh BMEF nội tiếp; MA là phân giác của CMD; AC2 = AE.AM; tâm đường tròn ngoại tiếp tam giác CEN nằm trên CI. Một tỉnh muốn xây đường điện từ M trên bờ biển đến B trên hòn đảo. Biết BB' = 2 km, AB' = 3 km. Chi phí làm đường điện trên bờ là 5 tỷ đồng, dưới biển là 13 tỷ đồng. Tìm vị trí điểm C trên bờ biển AB' sao cho chi phí xây đường điện theo đường gấp khúc ACB là thấp nhất. Hy vọng đề thi sẽ giúp các em học sinh ôn tập hiệu quả và tự tin đối phó với kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh chuyên môn Toán (chuyên) 2022 trường ĐHSP Hà Nội Chào đón quý thầy, cô giáo và các em học sinh lớp 9! Đây là đề thi chính thức dành cho thí sinh muốn thi vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này chỉ dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2). Kỳ thi sẽ diễn ra vào chiều thứ Tư, ngày 01 tháng 06 năm 2022. Đề thi bao gồm câu hỏi và đáp án cùng lời giải chi tiết do CLB Toán Lim thực hiện, gồm các thành viên: Nguyễn Duy Khương, Nguyễn Văn Hoàng, Nguyễn Khang và Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội: 1. Chứng minh rằng nếu có đa thức P(x) = ax² + bx + c (với a khác 0) nhận giá trị nguyên với mọi số nguyên x, thì ba số 2a, a + b, c đều là số nguyên. Ngược lại, nếu ba số 2a, a + b, c là số nguyên, thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. 2. Trong tam giác ABC đều ngoại tiếp (O), cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại F. Hãy chứng minh rằng EO là tia phân giác góc CEF và tứ giác ABOF là tứ giác nội tiếp. Hơn nữa, chứng minh rằng A, F, D thẳng hàng với D là giao điểm thứ hai của CE và đường tròn (O). 3. Viết 10 số từ 0 đến 9 vào mười ô tròn sao cho mỗi số được viết đúng một lần. Tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có cách viết 10 số như vậy không để 6 tổng bằng nhau? Chúc các em học sinh lớp 9 ôn tập tốt và thành công trong kỳ thi tuyển sinh sắp tới!
Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
Nội dung Đề tuyển sinh chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Đề thi tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội Chào các thầy cô và các em học sinh lớp 9, Sytu xin giới thiệu đến quý vị đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 tại trường Đại học Sư Phạm Hà Nội. Đề thi này sẽ được sử dụng cho mọi thí sinh dự tuyển vào các chuyên ngành, Toán chung, Toán điều kiện và vòng 1 của kỳ thi. Đề thi sẽ diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022. Với sự chuẩn bị cẩn thận, đề thi sẽ có đáp án và lời giải chi tiết do các tác giả uy tín thực hiện, bao gồm Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt. Dưới đây là một số câu hỏi mẫu trong đề tuyển sinh: Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi và thu được lãi 10% của giá nhập. Nếu cửa hàng tăng giá bán thêm 5% và chiết khấu cho khách 245000 đồng, lãi sẽ lên 12% của giá nhập. Hãy tìm giá tiền khi nhập về của chiếc tivi đó. Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD. Hãy chuẩn bị tâm lý và kiến thức tốt để chinh phục đề thi tuyển sinh năm nay. Chúc các em thành công!
Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Đề khảo sát Toán vào lần 2 năm 2022 trường Nguyễn Tất Thành Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay chúng ta sẽ cùng tìm hiểu về đề kiểm tra khảo sát môn Toán để ôn thi tuyển sinh vào lớp 10 tại trường THCS & THPT Nguyễn Tất Thành, Hà Nội. Đề thi bao gồm 08 câu trả lời ngắn và 03 câu tự luận, thời gian làm bài là 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội: + Một chiếc máy bay cất cánh từ mặt đất với vận tốc 600 km/h, theo đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một chiếc ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2 km/h. + Tính bán kính của hình thang cân ABCD có đáy bé AB = 2 cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức và kỹ năng giải toán. Chúc các em thành công!