Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 - 2020 trường Hàn Thuyên - Bắc Ninh

Ngày … tháng 10 năm 2019, trường THPT Hàn Thuyên, tỉnh Bắc Ninh tổ chức kỳ thi kiểm tra chất lượng môn Toán 12 lần thứ nhất giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh mã đề 132, đề gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, để hoàn thành tốt bài thi, học sinh cần nắm vững các kiến thức Toán 12 vừa được học, đồng thời ôn tập lại những kiến thức Toán 10 và Toán 11 trọng tâm. Trích dẫn đề kiểm tra chất lượng Toán 12 lần 1 năm 2019 – 2020 trường Hàn Thuyên – Bắc Ninh : + Cho S là tập các số tự nhiên có 7 chữ số. Lấy ngẫu nhiên một số từ S. Tính xác suất để số lấy được có chữ số tận cùng bằng 3 và chia hết cho 7 (kết quả làm tròn đến hàng phần nghìn)? + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AD = DC = x, AB = 2x. Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi G là trọng tâm của tam giác SAD. Tính khoảng cách d từ điểm G đến mặt phẳng (SBC). [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm A(0;2) và (d) là đường thẳng đi qua O. Gọi H là hình chiếu vuông góc của A trên (d). Giả sử H(a;b) với a > 0. Biết khoảng cách từ điểm H đến trục hoành bằng độ dài AH. Tính T = a^2 – 4b. + Cho hình hộp chữ nhật có tổng độ dài tất cả các cạnh bằng 40, độ dài đường chéo bằng 5√2. Tìm thể tích lớn nhất Vmax của khối hộp chữ nhật đó. + Mã số điện thoại cố định của tỉnh Bắc Ninh là một kí tự gồm 10 chữ số trong đó 4 chữ số đầu là 0222. Hỏi có nhiều nhất bao nhiêu số điện thoại được tạo thành?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 12 năm 2022 - 2023 trường Quốc Học Quy Nhơn - Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát đánh giá học lực của học sinh môn Toán 12 năm học 2022 – 2023 trường Quốc Học Quy Nhơn, tỉnh Bình Định; đề thi có đáp án trắc nghiệm mã đề 201 202 203 204. Trích dẫn Đề khảo sát Toán 12 năm 2022 – 2023 trường Quốc Học Quy Nhơn – Bình Định : + Một hộp chứa 21 quả cầu gồm 9 quả màu xanh được đánh số từ 1 đến 9, 7 quả màu đỏ được đánh số từ 1 đến 7 và 5 quả màu vàng được đánh số từ 1 đến 5. Chọn ngẫu nhiên ba quả cầu từ hộp đó. Xác suất để ba quả cầu được chọn có đủ ba màu và các số trên các quả cầu đôi một khác số nhau là? + Cho hình chóp S ABCD có đáy là hình thoi cạnh a ABC 120 SA vuông góc với đáy. Gọi M là điểm đối xứng của A qua D. Góc giữa đường thẳng SC với mặt phẳng (ABCD) bằng 45°. Khoảng cách giữa hai đường thẳng BD và SM bằng? + Trong không gian Oxyz cho hai điểm M (0;-1;2), N (−1;1;3). Một mặt phẳng (P) đi qua hai điểm M và N sao cho khoảng cách từ điểm K (0;0;2) đến mặt phẳng (P) đạt giá trị lớn nhất. Một vectơ pháp tuyến của mặt phẳng (P) là?
Đề khảo sát Toán 12 lần 3 năm 2022 - 2023 trường THPT Kim Liên - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 lần 3 năm học 2022 – 2023 trường THPT Kim Liên, thành phố Hà Nội; hướng đến kỳ thi tốt nghiệp THPT 2023 môn Toán. Trích dẫn Đề khảo sát Toán 12 lần 3 năm 2022 – 2023 trường THPT Kim Liên – Hà Nội : + Trong không gian Oxyz, cho mặt phẳng P đi qua điểm A(0;1;2) và song song với mặt phẳng Oxy. Gọi B C lần lượt là hình chiếu của A trên trục Oy Oz; E là trung điểm đoạn AB và I là điểm di động trên cạnh OC. Tam giác đều ACD nằm trong mặt phẳng P đồng thời điểm D có hoành độ dương. Khi diện tích tam giác DEI đạt giá trị nhỏ nhất, hãy tính độ dài đoạn thẳng EI. + Cho khối nón (Ν) có đỉnh S, chiều cao bằng 10, đáy là đường tròn tâm O. Gọi A B là hai điểm thuộc đường tròn đáy sao cho khối chóp S.OAB có thể tích bằng 40. Biết khoảng cách từ O đến mặt phẳng SAB bằng 20 29 29. Tính thể tích khối nón (Ν). + Cho hình lăng trụ ABCD A B C D có đáy là hình vuông. Hình chiếu vuông góc của A′ trên mặt phẳng (ABCD) trùng với trung điểm H của AB (tham khảo hình vẽ). Biết góc giữa hai mặt phẳng (ACD′) và (ABCD) bằng 60° và AA a 13. Tính thể tích V của khối lăng trụ ABCD A B C D.
Đề khảo sát Toán 12 năm 2022 - 2023 trường THPT Phan Đình Phùng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra khảo sát chất lượng môn Toán 12 năm học 2022 – 2023 trường THPT Phan Đình Phùng, thành phố Hà Nội; đề thi có đáp án trắc nghiệm mã đề 111 – 222 – 333 – 444. Trích dẫn Đề khảo sát Toán 12 năm 2022 – 2023 trường THPT Phan Đình Phùng – Hà Nội : + Đội thanh niên xung kích của một trường THPT có 12 học sinh, bao gồm 5 học sinh khối 12, 4 học sinh khối 11 và 3 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh trong đội xung kích để làm nhiệm vụ vào mỗi buổi sáng. Xác suất để 4 học sinh được chọn thuộc không quá hai khối lớp bằng? + Trong không gian, một vật thể nằm giữa hai mặt phẳng x = 0 và x = 4, có thiết diện vuông góc với trục hoành tại điểm có hoành độ x thuộc [0;4] là một tam giác đều có cạnh bằng 2 4x x. Vật thể này có thể tích bằng? + Một hình nón có bán kính đáy r, chiều cao h, độ dài đường sinh l. Trong ba kích thước này, kích thước lớn nhất là? A. chiều cao. B. bán kính đáy. C. độ dài đường sinh. D. phụ thuộc vào hình nón cụ thể.
Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 sở GDĐT Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thái Bình (mã đề 105); hướng đến kỳ thi tốt nghiệp THPT năm 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 sở GD&ĐT Thái Bình : + Khẳng định nào sau đây sai? A. Đồ thị hàm số y = (1/2)x nhận trục hoành làm đường tiệm cận ngang. B. Hàm số y = 2^x và y = log2x đồng biến trên mỗi khoảng mà hàm số xác định. C. Hàm số y = log1/2x có tập xác định là (0;+vc). D. Đồ thị hàm số y = log2-1x nằm phía trên trục hoành. + Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0). Gọi (P) là mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại điểm C sao cho tứ diện OABC có thể tích bằng 1/6. Phương trình mặt phẳng (P) là? + Trong tập hợp các số phức, cho phương trình z3 + (1 – 2m)z2 + 2mz + 4m = 0 với tham số m thuộc R. Gọi S là tập hợp các giá trị của m để phương trình có 3 nghiệm phân biệt và 3 điểm biểu diễn 3 nghiệm đó tạo thành tam giác đều. Tổng tất cả các phần tử của tập S bằng?