Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 1 Toán 10 năm 2022 - 2023 trường THPT Nguyễn Hữu Cầu - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán 10 năm học 2022 – 2023 trường THPT Nguyễn Hữu Cầu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 10 năm 2022 – 2023 trường THPT Nguyễn Hữu Cầu – TP HCM : + Trong một trận đấu bóng đá, người ta quan sát được quỹ đạo của quả bóng do thủ môn đá lên từ vạch 5m50 là một phần của đường cong parabol có phương trình 2 h t at bt c a 0 trong mặt phẳng tọa độ Oth, với O là vị trí ban đầu của quả bóng, t là thời gian (đơn vị giây) kể từ khi quả bóng được đá lên và h là độ cao (đơn vị mét) của quả bóng so với mặt sân cỏ. Biết rằng, sau 3 giây thì quả bóng lên đến vị trí cao nhất là 9 mét (tham khảo hình vẽ). + Cho A, B, C là 3 điểm phân biệt thỏa AB AC AB AC. Khẳng định nào sau đây đúng? A. Điểm B thuộc đoạn thẳng AC. B. Điểm A thuộc đoạn thẳng BC. C. 3 điểm A, B, C tạo thành một tam giác vuông tại A. D. Điểm C thuộc đoạn thẳng AB.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường Trung học Thực hành Sài Gòn – TP HCM : + Trong mặt phẳng tọa độ, cho ba điểm A(-1;4); B(2;5); C(3;-8). a) Chứng minh rằng tam giác ABC vuông. Tính diện tích tam giác ABC. b) Tìm tọa độ H là hình chiếu vuông góc của A trên đường thẳng BC. c) Tìm tọa độ điểm D trên trục tung và có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Giải các phương trình và hệ phương trình sau. + Cho biết sin x = 2/9 (90 < x < 180). Tính cos x; tan x; cot2 (180 – x).
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Giồng Ông Tố TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Giồng Ông Tố, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Giồng Ông Tố – TP HCM : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC biết A(1;4), B(-2;-1), C(3;1). 1) Tính chu vi tam giác ABC. 2) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. 3) Tìm trên trục hoành điểm P sao cho tổng khoảng cách từ P tới hai điểm A và B là nhỏ nhất. + Cho tam giác ABC có BC = 9, AB = 7 và AC = 8. Tính bán kính đường tròn nội tiếp tam giác ABC. + Cho hàm số y = ax2 + bx + 2 có đồ thị là (P). Tìm phương trình của (P).
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Diên Hồng TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường Diên Hồng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THCS&THPT Diên Hồng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THCS&THPT Diên Hồng – TP HCM : + Xác định Parabol (P): y = ax2 + bx + c có đồ thị hàm số như hình vẽ sau. + Giải các phương trình và hệ phương trình sau. + Tìm tất cả các giá trị thực của tham số m để phương trình vô nghiệm.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phạm Văn Sáng TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phạm Văn Sáng TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phạm Văn Sáng, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phạm Văn Sáng – TP HCM : + Xác định parabole (P): y = ax2 + 6x + c qua C(2;5) và có trục đối xứng x = 1. + Trong mặt phẳng tọa độ Oxy, cho ∆ABC biếtA(-3;1), B (3;3), C(4;0). a) Chứng minh ∆ABC vuông. b) Tìm tọa độ điểm D sao cho DBAC là hình bình hành. c) Gọi H là hình chiếu vuông góc của B lên đường thẳng AC. Tìm tọa độ điểm H. + Với những giá trị nào của m thì phương trình x2 + 2(m – 4)x + m2 – 2 = 0 có hai nghiệm x1, x2 thỏa 3x1x2 + x1^2 + x2^2 = 18.