Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập tỉ số thể tích khối đa diện có lời giải chi tiết

Trong quá trình học chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng) và luyện tập với các đề thi thử THPT Quốc gia môn Toán, chúng ta thường bắt gặp các bài toán vận dụng tính tỉ số thể tích giữa hai khối đa diện. Để giải quyết được dạng toán này, ngoài việc nắm vững công thức tính thể tích các khối đa diện thường gặp, còn phải biết vận dụng các định lí về tỉ số thể tích … trong trường hợp việc tính thể tích khối đa diện là phức tạp hoặc không có đủ giả thiết để tính toán. giới thiệu đến bạn đọc đề bài và lời giải chi tiết 130 bài tập tỉ số thể tích khối đa diện có lời giải chi tiết, với nhiều biến dạng khác nhau, đồ phức tạp khác nhau. Trích dẫn một số bài toán trong tài liệu bài tập tỉ số thể tích khối đa diện có lời giải chi tiết: + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 độ. Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC, mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tính tỉ số thể tích giữa hai phần đó. + Trong không gian Oxyz, cho các điểm A, B, C lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng? [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hai mặt bên (SAB) và (SAD) cùng vuông góc với mặt đáy. Biết góc giữa hai mặt phẳng (SCD) và (ABCD) bằng 45 độ. Gọi V1, V2 lần lượt là thể tích khối chóp S.AHK và S.ACD với H, K lần lượt là trung điểm của SC và SD. Tính độ dài đường cao của khối chóp S.ABCD và tỉ số k = V1/V2. + Cho khối tứ diện OABC với OA, OB, OC vuông góc từng đôi một và OA = a, OB = 2a, OC = 3a. Gọi M, N lần lượt là trung điểm của hai cạnh AC, BC. Thể tích của khối tứ diện OCMN tính theo a bằng? + Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A′, B′, C′ và D′ sao cho SA’/SA = SC’/SC = 1/3 và SB’/SB = SD’/SD = 3/4. Tính thể tích V của khối đa diện lồi S.A’B’C’D’.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập trắc nghiệm số phức - Phùng Hoàng Em
Tài liệu gồm 30 trang tóm tắt lý thuyết số phức và tuyển chọn các bài tập trắc nghiệm số phức có đáp án giúp học sinh học tốt chương trình Giải tích 12 chương 4 và ôn tập thi THPT Quốc gia môn Toán, tài liệu được biên soạn bởi thầy Phùng Hoàng Em. BÀI 1 . NHẬP MÔN SỐ PHỨC Vấn đề 1 . Xác định các đại lượng liên quan đến số phức. 1. Biến đổi số phức z về dạng A + Bi. 2. Khi đó: phần thực là A, phần ảo là B, số phức liên hợp là A + Bi = A − Bi, mô-đun bằng √(A^2 +B^2). Vấn đề 2 . Số phức bằng nhau. a + bi = c + di ⇔ a = c và b = d. a + bi = 0 ⇔ a = 0 và b = 0. Vấn đề 3 . Điểm biểu diễn số phức. Mỗi số phức z = a + bi được biểu diễn bởi duy nhất một điểm M(a,b) trên mặt phẳng tọa độ. Vấn đề 4 . Lũy thừa với đơn vị ảo. Các công thức biến đổi: i2 = −1, i3 = −i, in = 1 nếu n chia hết cho 4, in = i nếu n chia 4 dư 1, in = −1 nếu n chia 4 dư 2, in = −i nếu n chia 4 dư 3. Tổng n số hạng đầu của một cấp số cộng: Sn = n/2(u1 + un) hoặc Sn = n/2(2u1 + (n − 1)d), với u1 là số hạng đầu, d là công sai. Tổng n số hạng đầu của một cấp số nhân: Sn = u1.(1 − qn)/(1 − q), với u1 là số hạng đầu, q là công bội (q khác 1). [ads] BÀI 2 . PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH Vấn đề 1 . Phương trình với hệ số phức. Trong chương trình, ta chỉ xét phương trình dạng này với ẩn z bậc nhất. + Ta giải tương tự như giải phương trình bậc nhất trên tập số thực. + Thực hiện các biến đổi đưa về dạng z = A + Bi. Vấn đề 2 . Phương trình bậc hai với hệ số thực và một số phương trình quy về bậc hai. Xét phương trình ax2 + bx + c = 0, với a, b, c ∈ R và a khác 0. Đặt ∆ = b2 − 4ac, khi đó: 1. Nếu ∆ ≥ 0 thì phương trình có nghiệm x = (−b ±√∆)/2a. 2. Nếu ∆ < 0 thì phương trình có nghiệm x = (−b ± i√|∆|)/2a. 3. Định lý Viet: x1 + x2 = −b/a và x1.x2 = c/a. Vấn đề 3 . Xác định số phức bằng cách giải hệ phương trình. Gọi z = a + bi, với a, b ∈ R. + Nếu đề bài cho dạng hai số phức bằng nhau, ta áp dụng một trong hai công thức sau: a + bi = c + di ⇔ a = c hay b = d, a + bi = 0 ⇔ a = 0 hay b = 0. + Nếu đề bài cho phương trình ẩn z và kèm theo một trong các ẩn z, |z| … Ta thay z = a + bi vào điều kiện đề cho, đưa về “hai số phức bằng nhau”. + Nếu đề cho z thỏa hai điều kiện riêng biệt thì từ 2 điều kiện đó, ta tìm được hệ phương trình liên quan đến a, b. Giải tìm a, b. BÀI 3 . BIỄU DIỄN HÌNH HỌC CỦA SỐ PHỨC Vấn đề . Biễu diễn hình học của số phức. Trong mặt phẳng toạ độ Oxy, giả sử: M(x;y) là điểm biểu diễn của z = x + yi (x, y ∈ R), N(x’;y’) là điểm biểu diễn của z’ = x’ + y’i (x’, y’ ∈ R), I(a;b) là điểm biểu diễn của z0 = a + bi cho trước (a, b ∈ R). Khi đó, ta có các kết quả sau: + |z| = √(x^2 + y^2) = OM (khoảng cách từ điểm M đến gốc toạ độ O). + |z – z’| = √(x’ – x)2(y’ – y)2 = MN (khoảng cách giữa M và N). + |z – z0| ≤ R ⇔ (x – a)^2 + (y – b)^2 ≤ R^2: hình tròn tâm I(a; b), bán kính R. + |z – z0| = R ⇔ (x – a)^2 + (y – b)^2 = R^2: đường tròn tâm I(a; b), bán kính R.
936 bài tập trắc nghiệm số phức
giới thiệu thiệu đến thầy, cô và các em học sinh khối 12 tài liệu tuyển tập 936 bài tập trắc nghiệm số phức ôn thi THPT Quốc gia môn Toán, tài liệu gồm 266 trang gồm 453 câu hỏi số phức và các phép toán, 256 câu phương trình và các bài tập tìm số phức thỏa mãn điều kiện, 227 câu biểu diễn hình học của số phức, tìm tập hợp điểm. Mục lục tài liệu 936 bài tập trắc nghiệm số phức: Phần 1 . Tóm tắt lý thuyết. Phần 2 . Số phức và các phép toán (453 câu). A – Bài tập (260 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (193 câu). [ads] Phần 3 . Phương trình và các bài tập tìm số phức thỏa mãn điều kiện (256 câu). A – Bài tập (130 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (126 câu). Phần 4 . Biểu diễn hình học của số phức, tìm tập hợp điểm (227 câu). A – Bài tập (138 câu). B – Hướng dẫn giải. C – Bài tập tự luyện (89 câu). Trong mỗi phần đều bao gồm các bài tập trắc nghiệm số phức có đáp án và lời giải chi tiết, nhằm giúp các em học sinh nắm được phương pháp, kỹ năng giải toán số phức, và phần bài tập trắc nghiệm số phức tự luyện, giúp các em tự kiểm tra lại các kiến thức đã tiếp thu được. Tài liệu còn hướng dẫn sử dụng máy tính cầm tay Casio – Vinacal để giải nhanh một số bài tập trắc nghiệm số phức.
Bài tập trắc nghiệm số phức có đáp án - Nguyễn Hữu Nhanh Tiến
Tài liệu gồm 12 được biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến tổng hợp 99 bài toán trắc nghiệm số phức có đáp án trong chương trình Giải tích 12 chương 4, các bài toán được phân dạng và tuyển chọn từ các đề thi thử môn Toán 2018. Các dạng toán trong tài liệu : 1. KHÁI NIỆM SỐ PHỨC 1.1. Xác định các yếu tố cơ bản của số phức 1.2. Biểu diễn hình học của số phức cơ bản 2. PHÉP CỘNG, TRỪ VÀ NHÂN SỐ PHỨC 2.1. Thực hiện phép tính 2.2. Xác định các yếu tố cơ bản qua các phép tính 2.3. Bài toán quy về phương trình, hệ phương trình nghiệm thực 2.4. Bài toán tập hợp điểm [ads] 3. PHÉP CHIA SỐ PHỨC 3.1. Xác định các yếu tố cơ bản qua các phép tính 3.2. Bài toán quy về phương trình, hệ phương trình nghiệm thực 3.3. Bài toán tập hợp điểm 4. PHƯƠNG TRÌNH BẬC HAI HỆ SỐ THỰC 4.1. Giải phương trình 4.2. Tính toán biểu thức nghiệm 5. CỰC TRỊ CỦA SỐ PHỨC
Bài tập trắc nghiệm số phức có đáp án
Tài liệu gồm 99 trang tuyển chọn các bài tập trắc nghiệm số phức có đáp án thuộc chương trình Giải tích 12 chương 4, tài liệu được biên soạn bởi các tác giả: Nguyễn Ngọc Dũng, Tạ Nguyễn Đình Đăng, Vương Phú Quý, Nguyễn Viết Sinh, Nguyễn Cao Đẳng. Các bài tập trắc nghiệm số phức trong tài liệu được phân loại thành 5 dạng bài: §1. Định nghĩa số phức, các yếu tố của số phức §2. Các phép toán trên tập số phức §3. Phương trình – Hệ phương trình §4. Tập hợp điểm biểu diễn số phức – Dạng lượng giác của số phức §5. Các bài toán cực trị [ads] Xem thêm tài liệu cùng nhóm tác giả: + Bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng có đáp án (Giải tích 12 chương 3) + Bài tập trắc nghiệm phương pháp tọa độ trong không gian có đáp án (Hình học 12 chương 3)