Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh

Nội dung Đề học sinh giỏi lớp 7 môn Toán cấp trường năm 2018 2019 trường THCS Sông Trí Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 7 cấp trường năm 2018-2019 trường THCS Sông Trí Hà Tĩnh Đề thi học sinh giỏi Toán lớp 7 cấp trường năm 2018-2019 trường THCS Sông Trí Hà Tĩnh Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề khảo sát cho đội tuyển học sinh giỏi môn Toán lớp 7 cấp trường năm học 2018 – 2019 của trường THCS Sông Trí, thị xã Kỳ Anh, tỉnh Hà Tĩnh. Đề thi bao gồm lời giải chi tiết và thang chấm điểm. Trích đề học sinh giỏi Toán lớp 7 cấp trường năm 2018 – 2019 trường THCS Sông Trí – Hà Tĩnh: Cho tam giác ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng bờ là đường thẳng AB chứa điểm C vẽ đoạn thẳng AE ⊥ AB sao cho AE = AB. Trên nửa mặt phẳng bờ là đường thẳng AC chứa điểm B vẽ đoạn thẳng AD ⊥ AC sao cho AD = AC. a) Chứng minh BD = CE b) Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh ADE ≅ CAN c) Gọi K là giao điểm của DE và AM. Chứng minh AD^2 + KE^2 = AK^2 Trong cuộc thi tìm kiếm tài năng toán học có 20 câu hỏi. Mỗi câu trả lời đúng được 10 điểm, câu sai bị trừ đi 3 điểm. Một bạn học sinh đạt 148 điểm. Hỏi bạn đó trả lời đúng bao nhiêu câu hỏi. Tính chu vi của một tam giác cân biết độ dài hai cạnh là 2,4 cm và 5 cm. Đề thi này đưa ra các bài toán có tính logic, khéo léo và đòi hỏi sự tư duy logic của học sinh. Việc giải quyết các bài toán này không chỉ giúp học sinh rèn luyện kỹ năng Toán mà còn phát triển tư duy logic, sáng tạo và khả năng suy luận.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).
Đề thi HSG Toán 7 năm 2016 - 2017 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đáp án và lời giải chi tiết đề thi HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Hoằng Hóa – Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017.