Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olimpic lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội

Nội dung Đề thi Olimpic lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Quốc Oai Hà Nội Bản PDF - Nội dung bài viết Đề thi Olimpic Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội Đề thi Olimpic Toán lớp 7 năm 2020 – 2021 phòng GD&ĐT Quốc Oai – Hà Nội Chào mừng đến với đề thi Olimpic Toán lớp 7 năm 2020 – 2021 của phòng GD&ĐT Quốc Oai – Hà Nội. Đề thi này bao gồm các câu hỏi và bài toán thú vị dành cho các em học sinh lớp 7. Trích dẫn một số câu hỏi trong đề thi: Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng của 3 thửa ruộng A, B, C lần lượt tỷ lệ với 3 ; 4 ; 5. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của 2 thửa ruộng B và C là 35m. Hãy tính chiều dài mỗi thửa ruộng. Chứng minh rằng trong tam giác ABC vuông cân tại A và M là trung điểm của BC, điểm D bất kỳ trên đoạn BM, H, I lần lượt là hình chiếu của B, C trên đường thẳng AD: a/ BH = AI, b/ BH2 + CI2 có giá trị không đổi, c/ IM là phân giác của DIC. Cho tam giác ABC cân tại A có A 3C. Vẽ tia Cx sao cho CA là tia phân giác của BCx, Cx cắt BA tại D. Trong hình vẽ có bao nhiêu tam giác cân? Vì sao? Đề thi này sẽ giúp các em ôn tập và rèn luyện kỹ năng giải các bài toán toán học một cách logic và chính xác. Chúc các em thành công trong việc giải đề thi Olimpic Toán lớp 7 năm 2020 – 2021!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. + Cho tam giác ABC (AB < AC, B = 60). Hai tia phân giác AD (D BC) và CE (E AB) của ABC cắt nhau ở I. Chứng minh IDE cân. + Cho hai đa thức: f(x) và g(x). Xác định hệ số a;bcủa đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 trường THCS Nguyễn Chích - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa : + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC H BC. Biết HBE = 50o; MEB = 25o. Tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210;12. + Tính giá trị biểu thức A.
Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên