Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT thành phố Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT thành phố Vinh – Nghệ An : + Một bể nước dạng hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao tỉ lệ với 1: 2: 4. Tổng diện tích sáu mặt của bể nước là 112m2. Tính thể tích bể nước. + Một bể bơi được xây dựng thành hai khu vực với độ sâu khác nhau cho trẻ em và người lớn và các kích thước của lòng bể được cho như hình vẽ. Hỏi sau bao lâu bể bơi được bơm đầy nước, biết cứ mỗi phút máy bơm được vào bể 500 lít nước. + Cho tam giác ABC nhọn có AB < AC. Trên tia đối của tia AB lấy điểm D sao cho AB = AD. Qua B kẻ đường thẳng song song với CD cắt đường thẳng AC tại E. a. Chứng minh rằng BE = CD; ED = BC. b. Gọi P, Q lần lượt là trung điểm của BE, CD. Chứng minh rằng A là trung điểm của PQ. c. Gọi M là điểm bất kỳ nằm trong tam giác ABC. Xác định vị trí của M để biểu thức MA.BC + MB.AC + MC.AB đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2022 - 2023 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; đề thi hình thức 100% tự luận, thời gian 120 phút (không kể thời gian giao đề), đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 22 tháng 02 năm 2023. Trích dẫn Đề học sinh giỏi huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Tiên Du – Bắc Ninh : + Cho tam giác ABC có AB AC. Tia phân giác của góc A cắt cạnh BC tại điểm I. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh rằng BI = ID. b) Tia DI cắt tia AB tại điểm E. Chứng minh rằng IBE IDC. Từ đó suy ra BD // CE. c) Gọi H là trung điểm của EC. Chứng minh AH BD. d) Cho ABC ACB 2. Chứng minh AB + BI = AC. + Thí sinh lựa chọn làm một (chỉ một) câu trong hai câu sau: 1) Cho 2 4 6 8 98 100 A. Chứng minh rằng 1 50 A. 2) Tìm tất cả các số tự nhiên m và n thỏa mãn 2 2021 2020 2022 m n. + Tìm tất cả các sống uyên dương 1 2 n a a a và b (n là số nguyên dương nào đó) thỏa mãn đồng thời hai điều kiện sau?
Đề giao lưu HSG lần 3 Toán 7 năm 2022 - 2023 cụm THCS huyện Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi lần 3 môn Toán 7 năm học 2022 – 2023 cụm trường THCS huyện Nga Sơn, tỉnh Thanh Hóa (cụm: Liên – Tiến – Tân – Thanh); đề thi gồm 05 câu và 01 trang, thời gian 150 phút (không kể thời gian giao đề); ngày thi 23 tháng 02 năm 2023; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giao lưu HSG lần 3 Toán 7 năm 2022 – 2023 cụm THCS huyện Nga Sơn – Thanh Hóa : + Tìm x, y, z thỏa mãn: 4x 3y 4y 3z và 2x y z 14. Tìm số nguyên tố p sao cho p + 2, p + 6, p + 8, p + 14 cũng là số nguyên tố. Tìm tất cả các số nguyên dương x, y thỏa mãn (x + y)4 = 40x + 41. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. a) Chứng minh: MD = ME. b) Trên tia đối của tia CA lấy điểm K sao cho CK = BD, DK cắt BC tại I, đường vuông góc với DK tại I cắt AM tại S. Chứng minh: I là trung điểm của DK và SC vuông góc với AK. c) Chứng minh: MD + ME ≥ AD + AE. + Cho 100 99 98 97 A x 100x 100x 100x 100x 2122. Tính A khi x = 99.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Hà Trung - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi văn hóa môn Toán 7 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Hà Trung, tỉnh Thanh Hóa; đề thi gồm 05 câu – 01 trang, thời gian 150 phút (không kể thời gian giao đề); đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho a, b, c là ba số thực khác 0, thoả mãn điều kiện: b c a b a b c a c a b c. Hãy tính giá trị của biểu thức b c c a a b B 1 1 1. + Tìm giá trị nguyên dương của x và y, sao cho: 1/x + 1/y = 1/5. Tìm x; y; z biết: 2x = 3y; 4y = 5z và 4x – 3y + 5z = 7. Với n là số tự nhiên, chứng minh rằng: n2 + 2022 không phải là số chính phương. + Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. a. Chứng minh rằng: DM = EN. b. MN cắt BC tại I. Chứng minh I là trung điểm của MN. c. Chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Cẩm Thủy - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Thủy, tỉnh Thanh Hoá; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Cẩm Thủy – Thanh Hoá : + Số A được chia thành ba phần số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Biết f x chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f x. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ∆ADC = ∆ABE. b) Chứng minh rằng: = 600. c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng ∆AMN đều. d) Chứng minh rằng IA là phân giác của góc DIE.