Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Hải Hậu - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Hải Hậu – Nam Định : + Cho nửa đường tròn (O) đường kính AH, đường thẳng vuông góc với AH tại O cắt nửa đường tròn (O) tại K, từ H kẻ đường thẳng song song với OK cắt AK tại C. Biết AH = 12cm (Hình 1). Tính diện tích phần hình nằm ngoài nửa hình tròn (O) (Phần tô đậm). (lấy 3,14 và kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho nửa đường tròn tâm (O; R), đường kính AB; C là điểm nằm trên cung AB sao cho OC AB. Điểm M thuộc cung AC sao cho M khác A và khác C. Kẻ tiếp tuyến d của đường tròn (O; R) tại tiếp điểm M. Gọi H là giao điểm của BM và OC. Từ H kẻ một đường thẳng song song với AB, đường thẳng đó cắt đường thẳng d tại E. a) Chứng minh: Tứ giác OHME là tứ giác nội tiếp và OE // BH. b) Kẻ MK OC tại K (K OC), đường tròn ngoại tiếp ∆OBC cắt BM tại I. Chứng minh I là tâm đường tròn nội tiếp ∆OMK. + Quang và Minh cùng làm một công việc trong 7 giờ 20 phút thì xong. Nếu Quang làm trong 5 giờ và Minh làm trong 6 giờ thì cả hai làm được khối lượng công việc. Thời gian Quang làm một mình xong công việc là?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát môn Toán ôn thi tuyển sinh vào lớp 10 lần 2 năm học 2021 – 2022 trường THCS & THPT Nguyễn Tất Thành, thành phố Hà Nội; đề thi gồm 08 câu trả lời ngắn (viết đáp số của bài toán, không trình bày lời giải) và 03 câu tự luận (trình bày chi tiết lời giải), thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán vào lớp 10 lần 2 năm 2022 trường Nguyễn Tất Thành – Hà Nội : + Một chiếc máy bay đang cất cánh từ mặt đất với vận tốc 600 km/h. Biết rằng đường bay là đường thẳng tạo với phương nằm ngang một góc 30°. Hỏi sau 0,5 phút máy bay lên cao được bao nhiêu ki-lô-mét theo phương thẳng đứng? + Một ca nô xuôi dòng từ bến A đến bến B, cách nhau 30 km. Khi đến bến B, ca nô lập tức quay trở về bến A, cả đi lẫn về hết 2 giờ 45 phút. Tính vận tốc của ca nô biết vận tốc của dòng nước là 2km/h. + Cho hình thang cân ABCD có đáy bé AB = 2cm, đáy lớn CD = 8 cm và ngoại tiếp hình tròn tâm O bán kính r. Tính bán kính r.
Đề vào lớp 10 môn Toán (chuyên) năm 2022 - 2023 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022 – 2023 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; kỳ thi được diễn ra vào thứ Năm ngày 26 tháng 05 năm 2022. Trích dẫn đề vào lớp 10 môn Toán (chuyên) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định : + Từ 2022 số nguyên dương đầu tiên là 1; 2; 3; …; 2022, người ta chọn ra n số phân biệt sao cho cứ hai số bất kì được chọn ra đều có hiệu không là ước của tổng hai số đó. Chứng minh rằng n ≤ 674. + Cho đường tròn (O;R) và điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA và MB với đường tròn (O) (A và B là các tiếp điểm). Gọi D là điểm trên cung lớn AB của đường tròn (O;R) sao cho AD // MB và C là giao điểm thứ hai của đường thẳng MD với đường tròn (O;R). 1. Gọi H là giao điểm của các đường thẳng OM và AB. Chứng minh rằng MH.MO = MC.MD và tứ giác OHCD nội tiếp. 2. Gọi G là trọng tâm tam giác MAB. Chứng minh rằng ba điểm A C G thẳng hàng. 3. Giả sử OM = 3R. Kẻ đường kính BK của đường tròn (O;R). Gọi I là giao điểm của các đường thẳng MK và AB. Tính giá trị biểu thức T. + Cho p là số nguyên tố có dạng 4k + 3 (k thuộc N). Chứng minh rằng nếu a b thuộc Z thoả mãn a + b chia hết cho P thì a : p và b : p. Từ đó suy ra phương trình x2 + 4x + 9y2 = 58 không có nghiệm nguyên.
Đề vào lớp 10 môn Toán (chung) năm 2022 - 2023 trường chuyên Lê Hồng Phong - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 trường THPT chuyên Lê Hồng Phong, tỉnh Nam Định; Đề 1 dành cho học sinh thi vào các lớp chuyên tự nhiên và Đề 2 dành cho học sinh thi vào các lớp chuyên xã hội; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 05 năm 2022. Trích dẫn đề vào lớp 10 môn Toán (chung) năm 2022 – 2023 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Tiếp tuyến tại A của (O) cắt đường thẳng BC tại M. Gọi I là trung điểm của BC và D là điểm đối xứng với A qua OM, giao điểm của AD và OM là H. 1) Chứng minh tứ giác MAOI nội tiếp và MD2 = MB.MC. 2) Giả sử tiếp tuyến tại B của đường tròn (O) cắt OI tại F. Chứng minh tam giác OMI và tam giác OFH đồng dạng từ đó suy ra ba điểm A, D, F thẳng hàng. 3) Chứng minh rằng tứ giác BHOC nội tiếp và HB.MC = MB.HC. + Tìm toạ độ điểm M là giao điểm của đường thẳng y = 2x + 4 với trục Ox. + Biết hình tròn có chu vi là 47 cm. Tính diện tích hình tròn đó.
Đề khảo sát Toán thi vào 10 năm 2022 - 2023 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán luyện thi tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 29 tháng 04 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán thi vào 10 năm 2022 – 2023 phòng GD&ĐT Ba Đình – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một đội sản xuất phải làm 10 000 khẩu trang trong một thời gian quy định. Nhờ cải tiến kĩ thuật và tăng giờ làm nên mỗi ngày đội sản xuất được thêm 200 khẩu trang. Vì vậy, không những đã làm vượt mức kế hoạch 800 khẩu trang mà còn hoàn thành công việc sớm hơn 1 ngày so với dự định. Tính số khẩu trang mà đội sản xuất phải làm trong một ngày theo dự định. + Một thùng nước bằng tôn có dạng hình trụ với bán kính đáy là 0,2m và chiều cao 0,4m. Hỏi thùng nước này đựng đầy được bao nhiêu lít nước ? (Bỏ qua bề dày của thùng nước, lấy pi = 3,14 và làm tròn kết quả đến chữ số thập phân thứ hai). + Cho đường tròn O R có hai đường kính AB và CD vuông góc với nhau. Lấy điểm I thuộc đoạn thẳng OB I O B. Gọi E là giao điểm của đường thẳng CI với O E C H là giao điểm của hai đoạn thẳng AE và CD. 1) Chứng minh tứ giác OHEB là tứ giác nội tiếp. 2) Chứng minh AH AE R2 2. 3) Nếu I là trung điểm của đoạn thẳng OB. Tính tỉ số OH OA. 4) Tìm vị trí của I trên đoạn thẳng OB sao cho tích EAEB EC ED đạt giá trị lớn nhất.