Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2018 - 2019 phòng GDĐT Hoàn Kiếm - Hà Nội

Thứ Năm ngày 09 tháng 05 năm 2019, phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 năm học 2018 – 2019, kỳ thi nhằm mục đích kiểm tra năng lực học tập môn Toán của học sinh lớp 9 trước khi các em bước vào kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội được biên soạn bám sát cấu trúc đề thi tuyển sinh vào lớp 10 THPT môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây, đề gồm 1 trang với 5 bài toán tự luận, học sinh có 120 phút để hoàn thành bài thi. Trích dẫn đề khảo sát Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô và một xe máy cùng khởi hành từ A để đi đến B. Biết rằng quãng đường AB dài 60 km và vận tốc của mỗi xe không đổi trên toàn bộ quãng đường. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 15 km/giờ nên ô tô đến B sớm hơn xe máy là 40 phút. Tìm vận tốc của mỗi xe. [ads] + Cho parabol (P): y = 1/2.x^2 và đường thẳng (d): y = 2mx + 4 trong mặt phẳng tọa độ Oxy. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Gọi x1, x2 là hoành độ các giao điểm của (d) và (P). Tìm số dương m để |x1| + 2|x2| = 8. + Cho tam giác ABC nhọn, nội tiếp đường tròn (O). Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Chứng minh HA.HD = HB.HE = HC.HF. 3) Đường tròn ngoại tiếp tam giác DEF cắt cạnh BC tại giao điểm thứ hai là I. Chứng minh DH là tia phân giác của góc EDF và I là trung điểm của BC. 4) Hai tia BE, CF cắt (O) tại các giao điểm thứ hai lần lượt là M và N. Chứng minh nếu MN/OI = 2√2 thì MN là đường kính của (O).

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán 9 lần 4 năm 2022 - 2023 phòng GDĐT Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 4 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 4 năm 2022 – 2023 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Trong các câu sau, mỗi câu chỉ có một lựa chọn đúng. Em hãy ghi vào bài làm chữ cái in hoa đứng trước lựa chọn đúng (Ví dụ: Câu 1 nếu chọn A là đúng thì viết 1.A). Biểu thức 2024 2023 P x có nghĩa khi và chỉ khi? + Một công nhân được giao làm 64 sản phẩm trong một thời gian quy định. Nhưng thực tế, người đó lại được giao làm thêm 6 sản phẩm nữa. Do đó mỗi ngày người công nhân đã làm vượt mức 2 sản phẩm và hoàn thành sớm hơn dự định 1 ngày. Hỏi theo kế hoạch mỗi ngày người công nhân làm được bao nhiêu sản phẩm? + Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tiếp AB, AC tới đường tròn (B, C là các tiếp điểm). Đường thẳng đi qua A cắt đường tròn (O) tại hai điểm D và E (D nằm giữa A và E, tia AE nằm giữa AB và AO). Gọi H là trung điểm của DE, AE cắt BC tại I. Chứng minh rằng: a) Tứ giác ABOC nội tiếp đường tròn. b) HA là phân giác của góc BHC. c) 2 1 1 AI AD AE.
Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 25 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 tháng 5 năm 2023 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ca nô xuôi dòng sông từ A đến B dài 48km. Khi đến B, ca nô nghỉ 30 phút sau đó lại ngược dòng từ B về đến A. Tổng thời gian kể từ lúc ca nô đi từ A đến khi ca nô quay trở về A là 4 giờ 6 phút. Tìm vận tốc riêng của ca nô, biết vận tốc dòng nước là 3km/h. + Một thùng tôn hình trụ có bán kính đáy 0,3m và chiều cao 0,7m đang chứa đầy nước. Tính thể tích nước trong thùng (Lấy pi = 3,14 và bỏ qua bề dày của vật liệu). + Cho đường tròn (O; R) có hai đường kính AB và CD vuông góc tại O. Gọi I là trung điểm của OB. Tia CI cắt đường tròn (O) tại E. Gọi H là giao điểm của AE và CD. 1) Chứng minh: Tứ giác OIED nội tiếp. 2) Chứng minh: 2 AH AE R 2 và OA = 3.OH. 3) Gọi K là hình chiếu của O trên BD, Q là giao điểm của AD và BE. Chứng minh: Q, K, I thẳng hàng.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Hoàn Kiếm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 24 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Hoàn Kiếm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chiều dài lớn hơn chiều rộng 12m và diện tích mảnh đất bằng 2 85 m. Tính chiều dài và chiều rộng của mảnh đất theo đơn vị mét? + Một quả địa cầu hành chính có đường kính bằng 33cm. Tính diện tích bề mặt của quả địa cầu lấy pi = 3,14. + Cho đường tròn O R và một điểm M nằm ngoài đường tròn. Kẻ tiếp tuyến MA MB với đường tròn O R (A B là các tiếp điểm). Vẽ đường kính AD, lấy I là trung điểm của đoạn thẳng MO, gọi C là hình chiếu vuông góc của I lên AO. 1) Chứng minh bốn điểm M A O B thuộc một đường tròn. 2) Đường thẳng vuông góc với MO tại điểm I cắt đường thẳng OB tại điểm E. Chứng minh 1 2 2 OBOE OM. 3) Chứng minh IME đồng dạng với COI và CE MD.
Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Phúc Thọ, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Phúc Thọ – Hà Nội : + Một mảnh vườn hình chữ nhật. Nếu tăng chiều dài mảnh vườn đó thêm 2m và giảm chiều rộng mảnh vườn đó đi 4m thì diện tích mảnh vườn giảm đi 58m2. Nếu giảm chiều dài mảnh vườn đi 4m và tăng chiều rộng mảnh vườn thêm 5m thì diện tích mảnh vườn tăng thêm 20m2. Tính diện tích mảnh vườn hình chữ nhật lúc ban đầu. + Một quả bóng đá hình cầu có bán kính 10cm. Tính diện tích bề mặt quả bóng đó (lấy pi = 3,14). + Cho đường tròn (O; R) và điểm A cố định ở ngoài đường tròn. Vẽ đường thẳng OA cắt (O) tại hai điểm B và C (AB < AC). Qua A kẻ đường thẳng không đi qua O cắt (O) tại hai điểm D và E (AD < AE). Đường thẳng vuông góc với AB tại A cắt CE tại F. 1. Chứng minh tứ giác ABEF là tứ giác nội tiếp. 2. Gọi M là giao điểm thứ hai của FB với đường tròn (O). Chứng minh DM vuông góc AC. 3. Chứng minh CE.CF + AD.AE = AC2.