Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội

Nội dung Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Bản PDF - Nội dung bài viết Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Đề Olympic lớp 7 môn Toán đợt 1 năm 2022 2023 phòng GD ĐT Ứng Hòa Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 đợt 1 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Ứng Hòa, thành phố Hà Nội. Cùng tham gia để kiểm tra và nâng cao kiến thức Toán của mình nhé! Trích dẫn Đề Olympic Toán lớp 7 đợt 1 năm 2022 - 2023 phòng GD&ĐT Ứng Hòa - Hà Nội: + Ba lớp 7A, 7B, 7C đã mua một số gói tăm từ thiện. Ban đầu, số gói tăm dự định chia cho ba lớp theo tỉ lệ 5:6:7. Tuy nhiên sau đó, việc chia được thay đổi thành tỉ lệ 4:5:6, dẫn đến một lớp nhận nhiều hơn 4 gói tăm so với dự định ban đầu. Hãy tính tổng số gói tăm mà ba lớp đã mua. + Đề bài tiếp theo đề cập đến tam giác ABC với AB AC và đường phân giác AD. Điểm E trên cạnh AC sao cho AE AB. Hãy chứng minh rằng BD DE và đưa ra các bước chứng minh khác liên quan đến tam giác và giao điểm K của các đường thẳng. + Cuối cùng, Ông Nam gửi 100 triệu vào ngân hàng với lãi suất 8%/năm. Sau 36 tháng, hãy tính tổng số tiền ông Nam nhận được, bao gồm cả gốc và lãi (nếu lãi không rút ra). Phải làm thế nào để tiền lãi được tính vào vốn cho các kì hạn tiếp theo?

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chọn HSG Toán 7 năm 2018 - 2019 phòng GDĐT Xuân Trường - Nam Định
Đề khảo sát chọn HSG Toán 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút, đề thi nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 đang học tập tại các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán 7 để tham dự kỳ thi học sinh Toán 7 cấp tỉnh, đề thi có lời giải chi tiết.
Đề giao lưu học sinh giỏi Toán 7 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 03 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Tam Dương - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Tam Dương – Vĩnh Phúc : + Cho góc xOy bằng 600. Tia Oz là phân giác của góc xOy. Từ điểm B bất kì trên tia Ox kẻ BH, BK lần lượt vuông góc với Oy, Oz tại H và K. Qua B kẻ đường song song với Oy cắt Oz tại M. Chứng minh rằng BH = MK. + Cho tam giác ABC vuông cân tại A. Điểm M nằm bên trong tam giác sao cho MA = 2cm, MB = 3cm và AMC = 135 độ. Tính MC. + Từ 200 số tự nhiên 1; 2; 3;…; 200, ta lấy ra k số bất kì sao cho trong các số vừa lấy luôn tìm được 2 số mà số này là bội của số kia. Tìm giá trị nhỏ nhất của k.
Đề khảo sát HSG Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Kon Tum
Đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum có đáp án + lời giải chi tiết + hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2017. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum : + Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: a) BE = CD. b) BDE là tam giác cân. c) EIC 60 và IA là tia phân giác của DIE. + Tìm số hữu tỉ x, sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. + Cho các số a, b, c không âm thỏa mãn: a + 3c = 2016; a + 2b = 2017. Tìm giá trị lớn nhất của biểu thức P = a + b + c.