Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh

Nội dung Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh; đề thi gồm 05 trang, hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 132 – 209. Trích dẫn Đề kiểm tra lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Lý Thường Kiệt – Bắc Ninh : + Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu: trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất? A. 750 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. B. 250 triệu cho trái phiếu chính phủ,750 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. C. 200 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. D. 750 triệu cho trái phiếu chính phủ, 200 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn. số kilôgam lần lượt thịt bò, thịt lợn mà gia đình cần mua để chi phí là ít nhất là? + Lớp 12A có 10 học sinh biết chơi bóng đá, 7 học sinh biết chơi bóng chuyền, 6 học sinh biết chơi bóng rổ, có 4 học sinh biết chơi cả bóng đá, bóng chuyền; có 3 học sinh biết chơi cả bóng đá, bóng rổ; 2 học sinh biết chơi cả bóng chuyền, bóng rổ; 1 học sinh biết chơi cả ba môn thể thao này. Hỏi số học sinh biết chơi ít nhất 1 môn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội
Nội dung Đề HSG lớp 10 môn Toán vòng 3 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023 trường THPT Nguyễn Gia Thiều Hà Nội Chào mừng đến với Đề thi HSG lớp 10 môn Toán vòng 3 năm học 2022 - 2023 của trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi này sẽ giúp các em học sinh lớp 10 ôn tập và chuẩn bị cho kì thi chọn học sinh giỏi cấp trường. Trong đề thi này, chúng ta sẽ đối mặt với các bài toán thú vị, như bài toán về việc đếm số học sinh giỏi theo từng môn, bài toán về thám hiểm vùng cực và cách di chuyển hiệu quả để trở về căn cứ trước khi bão tuyết ập đến, cũng như bài toán về nhịp tim và công thức tính nhịp tim tối đa ở các độ tuổi khác nhau. Bài toán đầu tiên yêu cầu chúng ta xác định số học sinh giỏi môn Võ trong lớp 10A, khi đã biết số học sinh giỏi ít nhất một môn. Bài toán thứ hai đưa ra tình huống đầy thách thức của đoàn thám hiểm và cách tính toán để di chuyển hiệu quả. Bài toán cuối cùng giúp chúng ta hiểu rõ về mối quan hệ giữa nhịp tim tối đa và độ tuổi, cũng như cách tính toán để tập thể dục hiệu quả. Hãy cùng rèn luyện kỹ năng giải toán, logic và khả năng suy luận thông qua các bài toán thú vị trong Đề HSG lớp 10 Toán vòng 3 năm 2022 - 2023. Chúc các em thành công và giải được nhiều bài toán hóc búa!
Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội
Nội dung Đề HSG lớp 10 môn Toán vòng 2 năm 2022 2023 trường THPT Nguyễn Gia Thiều Hà Nội Bản PDF - Nội dung bài viết Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà NộiBài toán sản xuấtBài toán "Lá cờ Việt Nam"Bài toán hàm số Đề HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 vòng 2 năm học 2022-2023 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội. Đề thi bao gồm đáp án và lời giải chi tiết để giúp các em ôn tập và chuẩn bị tốt cho kỳ thi. Bài toán sản xuất Trong bài toán này, có ba nhóm máy A, B, C được sử dụng để sản xuất hai loại sản phẩm I và II. Bảng thông tin về số máy cần thiết từng nhóm để sản xuất mỗi loại sản phẩm được cung cấp. Mỗi sản phẩm mang lại một lợi nhuận khác nhau. Bài toán yêu cầu tìm phương án sản xuất để có lãi cao nhất. Bài toán "Lá cờ Việt Nam" Bài toán liên quan đến tỷ số vàng, một khái niệm từ toán học và nghệ thuật. Tỷ số vàng thường được ký hiệu bằng ký hiệu (phi) trong bảng chữ cái Hy Lạp. Nội dung bài toán đưa ra một ví dụ về tỷ số vàng và mối liên hệ với hình chữ nhật, cùng với quy định về quốc kỳ nước Cộng hòa xã hội chủ nghĩa Việt Nam. Bài toán hàm số Trong bài toán này, đề cập đến hình chữ nhật, liên quan đến hàm số và diện tích tam giác. Em được yêu cầu tìm tọa độ điểm C trên cung AB của đồ thị parabol P sao cho tam giác ABC có diện tích lớn nhất và tính diện tích đó. Tất cả các bài toán trong đề thi HSG Toán lớp 10 vòng 2 năm 2022-2023 trường THPT Nguyễn Gia Thiều, Hà Nội đều mang tính chất thực tế và cần sự tư duy logic và kiến thức toán học vững chắc từ các em học sinh. Chúng tôi hy vọng rằng các em sẽ vượt qua thử thách này một cách xuất sắc và phấn đấu học tập hơn nữa trong tương lai.
Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre
Nội dung Đề chọn đội tuyển HSG lớp 10 môn Toán năm 2022 2023 trường THPT chuyên Bến Tre Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre Đề thi chọn đội tuyển HSG Toán lớp 10 năm 2022 - 2023 trường THPT chuyên Bến Tre Xin chào quý thầy cô và các em học sinh lớp 10! Trong kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2022 - 2023 của trường THPT chuyên Bến Tre, chúng ta sẽ gặp phải những bài toán thú vị và thách thức. Hãy cùng nhau khám phá những câu hỏi hấp dẫn dưới đây: Có bao nhiêu cách sắp xếp 6 nữ và 16 nam để nhảy múa theo vòng tròn sao cho có ít nhất 2 người nam đứng giữa 2 người nữ bất kỳ? Tìm tất cả các hàm số $f: \mathbb{R} \to \mathbb{R}$ thỏa mãn $f(xy + f(x)) = xf(y)$ với mọi $x,y \in \mathbb{R}$. Chứng minh rằng nếu $p$ và $q$ là hai số nguyên tố phân biệt, thì $p^{q - 1} + q^{p - 1}$ chia hết cho $p \cdot q$. Cho $p$ là số nguyên tố khác 2 và $a, b$ là hai số tự nhiên lẻ sao cho $a + b$ chia hết cho $p$ và $a - b$ chia hết cho $p - 1$. Chứng minh rằng $a^b + b^a$ chia hết cho $2p$. Cho tam giác $ABC$ và điểm $M$ nằm trong tam giác. Gọi $D, E, F$ lần lượt là các giao điểm của các tia $AM, BM, CM$ với các cạnh $BC, CA, AB$. Gọi $K$ là giao điểm của $DE$ và $CM$, $H$ là giao điểm của $DF$ và $BM$. Chứng minh rằng các đường thẳng $AD, BK, CH$ đồng quy. Hãy cùng nhau tham gia và thử thách phản xạ, sự sáng tạo và kiến thức Toán của mình trong kỳ thi sắp tới!
Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề học sinh giỏi lớp 10 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 10 năm 2022-2023 trường Nguyễn Đăng Đạo - Bắc Ninh Đề học sinh giỏi Toán lớp 10 năm 2022-2023 trường Nguyễn Đăng Đạo - Bắc Ninh Xin chào quý thầy, cô giáo và các em học sinh lớp 10! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2022-2023 của trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh. Đề thi bao gồm 1 trang với 9 bài toán hình thức tự luận, thời gian làm bài là 150 phút (không tính thời gian phát đề). Một trong những bài toán trong đề thi được đưa ra như sau: 1. Một công ty vận tải nhận đơn hàng chở 14 tấn hàng loại I và 9 tấn hàng loại II. Công ty chỉ có 2 loại xe, loại A và B. Loại A có 10 chiếc, loại B có 9 chiếc. Mỗi chiếc xe loại A chỉ chở được tối đa 2 tấn hàng loại I và 0,6 tấn hàng loại II, chi phí vận chuyển là 4 triệu đồng. Mỗi chiếc xe loại B chỉ chở được tối đa 1 tấn hàng loại I và 1,5 tấn hàng loại II, chi phí vận chuyển là 3 triệu đồng. Hỏi chi phí vận chuyển thấp nhất của đơn hàng này là bao nhiêu? 2. Parabol P: y=f(x) thỏa mãn: 2f(x)+x^2-5=0. Parabol P: y=f(x) cắt trục hoành tại 2 điểm A và B. Tính độ dài đoạn thẳng AB. 3. Cho tứ giác ABCE có BA=BC=a và ACE đều có cạnh bằng a√3. Trên các đoạn thẳng AC và CE lấy 2 điểm M và N sao cho: AM/CN=k và AC/CE=k. a) Tìm k để MN cắt đoạn thẳng EG (G là trung điểm của BC). b) Tìm k để tổng BM+BN đạt giá trị nhỏ nhất. Hãy thử sức và trải nghiệm với bài thi này nhé! Chúc các em thành công!