Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 7 năm 2021 - 2022 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu Olympic cấp thị xã môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thị xã Kinh Môn, tỉnh Hải Dương. Trích dẫn đề Olympic Toán 7 năm 2021 – 2022 phòng GD&ĐT Kinh Môn – Hải Dương : + Tìm các số nguyên x và y biết: x + xy + y = 2. + Cho các số nguyên dương a b c d thoả mãn a2 + b2 + c2 + d2 chia hết cho 2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC nhọn có AB < AC < BC, O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, OI vuông góc BC tại I. 1) Chứng minh CHI cân. 2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI . Chứng minh M là trung điểm của AK. 3) Chứng minh B, O, M thẳng hàng.
Đề học sinh năng khiếu Toán 7 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra học sinh năng khiếu môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2022. Trích dẫn đề học sinh năng khiếu Toán 7 năm 2021 – 2022 phòng GD&ĐT Thanh Trì – Hà Nội : + Bạn An nghĩ ra một số có ba chữ số, biết số đó chia hết cho 18 và các chữ số của số đó tỉ lệ với ba số 1; 2; 3. + Cho tam giác ABC vuông tại A (AB < AC), gọi O là trung điểm của đoạn thẳng BC. Trên tia đối của tia OA lấy điểm K sao cho OA = OK. a. Chứng minh ABC = CKA b. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Qua điểm D vẽ đường thẳng vuông góc với BC cắt AC tại E. Gọi F là hình chiếu của điểm E trên AH. Chứng minh AF = HB. c. Gọi M là trung điểm của đoạn thẳng BE. Tính số đo CHM. d. Chứng minh: AB2 AC2 AH2. + Tìm các số a, b, c nguyên dương thỏa mãn.
Đề HSG huyện Toán 7 năm 2021 - 2022 phòng GDĐT Thuận Thành - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện cấp THCS môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thuận Thành, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 04 năm 2022. Trích dẫn đề HSG huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Thuận Thành – Bắc Ninh : + Cho ba hình chữ nhật, biết diện tích của hình thứ nhất và diện tích của hình thứ hai tỉ lệ với 4 và 5, diện tích hình thứ hai và diện tích hình thứ ba tỉ lệ với 7 và 8, hình thứ nhất và hình thứ hai có cùng chiều dài và tổng các chiều rộng của chúng là 27 cm, hình thứ hai và hình thứ ba có cùng chiều rộng, chiều dài của hình thứ ba là 24 cm. Tính diện tích của mỗi hình chữ nhật đó. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. 1. Chứng minh rằng: AC = EB và AC // BE 2. Gọi I là một điểm trên AC, K là một điểm trên EB sao cho: Al = EK. Chứng minh: I, M, K thẳng hàng. 3. Từ E kẻ EH vuông góc BC (H thuộc BC). Biết góc HBE bằng 50°; góc MEB bằng 25°, tính các góc HEM và BME? 4. Từ điểm O tùy ý trong tam giác ABC, kẻ OQ, ON, OP lần lượt vuông góc với các cạnh BC, CA, AB. Hãy tính tỉ số: (AN2 + BP2 + CQ2)/(AP2 + BQ2 + CN2). + Tìm các số nguyên dương a b c thỏa mãn.
Đề học sinh giỏi huyện Toán 7 năm 2021 - 2022 phòng GDĐT Nga Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Nga Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2021 – 2022 phòng GD&ĐT Nga Sơn – Thanh Hóa : + Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứmg minh rằng đa thức f(x) có ít nhất hai nghiệm là 0 và -1. + Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho AM + AN = 2AB. 1. Chứng minh BM = CN. 2. Chứng minh BC đi qua trung điểm của MN 3. Đường trung trực của MN và tia phân giác của góc BAC cắt nhau tại K. Chứng minh KC vuông góc AC. + Cho M N 2018 2019 2020 2021 2019 2020 2021 2018. So sánh M và N?