Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên: BÀI 1 . TẬP HỢP. PHẦN TỬ CỦA TẬP HỢP. + Dạng 1. Viết một tập hợp cho trước. + Dạng 2. Sử dụng các kí hiệu. + Dạng 3. Minh họa một tập hợp cho trước bằng hình vẽ. BÀI 2 . TẬP HỢP CÁC SỐ TỰ NHIÊN. + Dạng 1. Tìm số liền sau, số liền trước của một số tự nhiên cho trước. + Dạng 2. Tìm các số tự nhiên thỏa mãn điều kiện cho trước. + Dạng 3. Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước. BÀI 3 . GHI SỐ TỰ NHIÊN. + Dạng 1. Ghi các số tự nhiên. + Dạng 2. Viết tất cả các số có n chữ số từ n chữ số cho trước. + Dạng 3. Tính số các số có n chữ số cho trước. + Dạng 4. Sử dụng công thức đếm số các số tự nhiên. + Dạng 5. Đọc và viết các số bằng chữ số la mã. BÀI 4 . SỐ PHẦN TỬ CỦA MỘT TẬP HỢP. TẬP HỢP CON. + Dạng 1. Viết một tập hợp bằng cách liệt kê các phần tử theo tính chất đặc trưng cho các phần tử của tập hợp ấy. + Dạng 2. Sử dụng các kí hiệu. + Dạng 3. Tìm số phần tử của một tập hợp cho trước. + Dạng 4. Bài tập về tập rỗng. + Dạng 5. Viết tất cả các tập hợp con của tập cho trước. BÀI 5 . PHÉP CỘNG VÀ PHÉP NHÂN. + Dạng 1. Thực hành phép cộng, phép nhân. + Dạng 2. Áp dụng các tính chất của phép cộng và phép nhân để tính nhanh. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Viết một số dưới dạng một tổng hoặc một tích. + Dạng 5. Tìm chữ số chưa biết trong phép cộng, phép nhân. + Dạng 6. So sánh hai tổng hoặc hai tích mà không tính cụ thể giá trị của chúng. + Dạng 7. Tìm số tự nhiên có nhiều chữ số khi biết điều kiện xác định các chữ số trong số đó. BÀI 6 . PHÉP TRỪ VÀ PHÉP CHIA. + Dạng 1. Thực hành phép trừ và phép chia. + Dạng 2. Áp dụng tính chất các phép tính để tính nhanh. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Bài tập về phép chia có dư. + Dạng 5. Tìm những chữ số chưa biết trong phép trừ và phép chia. BÀI 7 . LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN. NHÂN HAI LŨY THỪA CÙNG CƠ SỐ. + Dạng 1. Viết gọn một tích bằng cách dùng lũy thừa. + Dạng 2. Viết một số dưới dạng một lũy thừa với số mũ lớn hơn 1. + Dạng 3. Nhân hai lũy thừa cùng cơ số. BÀI 8 . CHIA HAI LŨY THỪA CÙNG CƠ SỐ. + Dạng 1. Viết kết quả phép tính dưới dạng một lũy thừa. + Dạng 2. Tính kết quả phép chia hai lũy thừa bằng hai cách. + Dạng 3. Tìm số mũ của một lũy thừa trong một đẳng thức. + Dạng 4. Viết một số tự nhiên dưới dạng tổng các lũy thừa của 10. + Dạng 5. Tìm cơ số của lũy thừa. + Dạng 6. So sánh các số viết dưới dạng lũy thừa. BÀI 9 . THỨ TỰ THỰC HIỆN CÁC PHÉP TÍNH. + Dạng 1. Thực hiện các phép tính theo thứ tự đã quy định. + Dạng 2. Tìm số chưa biết trong đẳng thức hoặc trong một sơ đồ. + Dạng 3. So sánh giá trị hai biểu thức đại số. [ads] BÀI 10 . TÍNH CHẤT CHIA HẾT CỦA MỘT TỔNG. + Dạng 1. Xét tính chia hết của một tổng hoặc một hiệu. + Dạng 2. Tìm điều kiện của một số hạng để tổng hoặc hiệu chia hết cho một số nào đó. + Dạng 3. Xét tính chia hết của một tích. BÀI 11 . DẤU HIỆU CHIA HẾT CHO 2 VÀ CHO 5. + Dạng 1. Nhận biết các số chia hết cho 2 và cho 5. + Dạng 2. Viết các số chia hết cho 2, cho 5 từ các số hoặc các chữ số cho trước. + Dạng 3. Toán có liên quan đến số dư trong phép chia một số tự nhiên cho 2, cho 5. + Dạng 4. Tìm tập hợp các số tự nhiên chia hết cho 2, cho 5 trong một khoảng cho trước. + Dạng 5. Vận dụng tính chất chia hết và chia còn dư để giải toán có lời văn. BÀI 12 . DẤU HIỆU CHIA HẾT CHO 3, CHO 9. + Dạng 1. Nhận biết các số chia hết cho 3, cho 9. + Dạng 2. Viết các số chia hết cho 3, cho 9 từ các số hoặc các chữ số cho trước. + Dạng 3. Toán có liên quan đến số dư trong phép chia một số tự nhiên cho 3, cho 9. + Dạng 4. Tìm tập hợp các số tự nhiên chia hết cho 3, cho 9 trong một khoảng cho trước. BÀI 13 . ƯỚC VÀ BỘI. + Dạng 1. Tìm và viết tập hợp các ước, tập hợp các bội của một số cho trước. + Dạng 2. Viết tất cả các số là bội hoặc ước của một số cho trước và thỏa mãn điều kiện cho trước. + Dạng 3. Bài toán đưa về việc tìm ước hoặc bội của một số cho trước. BÀI 14 . SỐ NGUYÊN TỐ. HỢP SỐ. BẢNG SỐ NGUYÊN TỐ. + Dạng 1. Nhận biết số nguyên tố, hợp số. + Dạng 2. Viết số nguyên tố hoặc hợp số từ những số cho trước. + Dạng 3. Chứng minh một số là số nguyên tố hay hợp số. BÀI 15 . PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ. + Dạng 1. Phân tích các số cho trước ra thừa số nguyên tố. + Dạng 2. Ứng dụng phân tích một số ra thừa số nguyên tố để tìm các ước của số đó. + Dạng 3. Bài toán đưa về việc phân tích một số ra thừa số nguyên tố. BÀI 16 . ƯỚC CHUNG VÀ BỘI CHUNG. + Dạng 1. Nhận biết và viết tập hợp các ước chung của hai hay nhiều số. + Dạng 2. Bài toán đưa về việc tìm ước chung của hai hay nhiều số. + Dạng 3. Nhận biết và viết tập hợp các bội chung của hai hay nhiều số. + Dạng 4. Tìm giao của hai tập hợp cho trước. BÀI 17 . ƯỚC CHUNG LỚN NHẤT. + Dạng 1. Tìm ước chung lớn nhất của các số cho trước. + Dạng 2. Bài toán đưa về việc tìm ưcln của hai hay nhiều số. + Dạng 3. Tìm các ước chung của hai hay nhiều số thỏa mãn điều kiện cho trước. BÀI 18 . BỘI CHUNG NHỎ NHẤT. + Dạng 1. Tìm bội chung nhỏ nhất của các số cho trước. + Dạng 2. Bài toán đưa về việc tìm bcnn của hai hay nhiều số. + Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trung điểm của đoạn thẳng
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trung điểm của đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm trung điểm của đoạn thẳng. Kĩ năng: + Vận dụng được tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng để tính độ dài đoạn thẳng. + Chứng minh được một điểm là trung điểm của một đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM 1. Trung điểm của đoạn thẳng. Định nghĩa: Trung điểm M của đoạn thẳng AB là điểm nằm giữa A, B và cách đều A, B. 2. Cách vẽ trung điểm của đoạn thẳng. Cách 1. Vẽ theo độ dài. Để vẽ trung điểm M của đoạn thẳng AB a cm ta vẽ điểm M trên tia AB sao cho a AM cm 2. Cách 2. Gấp giấy. Gấp giấy sao cho điểm A trùng với điểm B. Nếp gấp cắt đoạn AB tại trung điểm M của AB. II. CÁC DẠNG BÀI TẬP Dạng 1 . Tính độ dài đoạn thẳng. Áp dụng tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng. + Nếu M là trung điểm của đoạn thẳng AB thì 2 AB MA MB. + Nếu điểm M nằm giữa hai điểm A và B thì MA MB AB. Dạng 2 . Chứng minh một điểm là trung điểm của một đoạn thẳng. Để chứng minh điểm M là trung điểm của đoạn thẳng AB ta cần chứng minh: Cách 1: + Điểm M nằm giữa A và B (hoặc AM MB AB). + MA = MB. Cách 2: Chứng minh 2 AB MA MB.
Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.
Chuyên đề tia
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tia, hai tia đối nhau, hai tia trùng nhau. Kĩ năng: + Vẽ được các tia thỏa mãn điều kiện cho trước. + Dựa vào khái niệm tia, xác định được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM 1. Tia. Định nghĩa: Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O. 2. Hai tia đối nhau. Định nghĩa: Hai tia chung gốc Ox và Oy tạo thành đường thẳng xy được gọi là hai tia đối nhau. Nhận xét: Mỗi điểm trên đường thẳng là gốc chung của hai tia đối nhau. 3. Hai tia trùng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. Bài toán 1. Nhận biết tia. + Bước 1. Sử dụng khái niệm một tia để xác định các tia có trong hình. Xác định điểm gốc của tia và phần đường thẳng được chia bởi gốc. + Bước 2. Sử dụng một trong các cách để gọi tên tia. Bài toán 2. Xác định tia đối. + Bước 1. Xác định các điểm trên hình là gốc chung của hai tia đối. + Bước 2. Xác định các tia có chung gốc và tạo thành một đường thẳng. Liệt kê tên các cặp tia đối nhau. Bài toán 3. Xác định tia trùng nhau. + Bước 1. Sử dụng khái niệm về hai tia trùng nhau để xác định trên hình vẽ. + Bước 2. Kể tên các cặp tia trùng nhau. Dạng 2 : Vẽ các tia theo điều kiện cho trước. Dạng 3 : Xác định điểm nằm giữa hai điểm khác.
Chuyên đề đường thẳng đi qua hai điểm
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường thẳng đi qua hai điểm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tiên đề về đường thẳng đi qua hai điểm phân biệt. + Nhận biết được khái niệm hai đường thẳng cắt nhau, song song. Kĩ năng: + Vẽ được đường thẳng đi qua hai điểm. + Đếm được số đường thẳng trên hình vẽ cho trước. I. LÍ THUYẾT TRỌNG TÂM 1. Vẽ và đặt tên đường thẳng. Vẽ đường thẳng: + Vẽ đường thẳng đi qua hai điểm A và B. + Đặt cạnh thước đi qua hai điểm A và B. + Dùng bút chì vạch theo cạnh thước. Có một đường thẳng và chỉ một đường thẳng đi qua hai điểm A và B. Tên đường thẳng: Một đường thẳng có thể được đặt tên bằng: + Một chữ cái in thường. + Tên hai điểm thuộc đường thẳng đó. + Hai chữ cái in thường. 2. Đường thẳng trùng nhau, cắt nhau, song song. Hai đường trùng nhau: Hai đường thẳng AB và AC trùng nhau. Hai đường thẳng cắt nhau: Hai đường thẳng cắt nhau là hai đường thẳng có duy nhất một điểm chung. Hai đường thẳng AB và AC cắt nhau tại A. A là giao điểm của hai đường thẳng đó. Hai đường thẳng song song: Hai đường thẳng song song là hai đường thẳng không có điểm chung. Hai đường thẳng a và b không có điểm chung nào (dù có kéo dài mãi mãi về hai phía). Hai đường thẳng a và b song song với nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đường thẳng. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt. Hai đường thẳng không trùng nhau được gọi là hai đường thẳng phân biệt. Dạng 2 : Giao điểm của hai đường thẳng cắt nhau. Giao điểm của hai đường thẳng cắt nhau là điểm chung của hai đường thẳng ấy.