Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2018 – 2019 phòng GD ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu

Nội dung Đề thi học kì 1 (HK1) lớp 8 môn Toán năm 2018 – 2019 phòng GD ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu Bản PDF - Nội dung bài viết Đề thi học kỳ 1 (HK1) Toán lớp 8 năm 2018 - 2019 Đề thi học kỳ 1 (HK1) Toán lớp 8 năm 2018 - 2019 Sytu xin giới thiệu đến tất cả các em học sinh khối lớp 8 đề thi HK1 Toán lớp 8 năm 2018 - 2019 từ phòng GD&ĐT Thị Xã Phú Mỹ – Bà Rịa – Vũng Tàu. Đề thi được biên soạn theo dạng tự luận, bao gồm 5 bài toán trên 1 trang, thời gian làm bài là 90 phút. Kỳ thi diễn ra vào ngày 20/12/2018 nhằm đánh giá kiến thức Toán của học sinh sau giai đoạn học kỳ 1 của năm học 2018 - 2019. Đề thi bao gồm các câu hỏi như sau: Cho tam giác ABC cân tại A, có AH là đường cao. Tính diện tích tam giác ABC khi đã biết AH = 6cm, BC = 8cm. Tiếp theo, chứng minh tứ giác AHBE là hình chữ nhật. Cho hai số dương x, y sao cho x^3 + y^3 = 3xy - 1. Tính giá trị của biểu thức: A = x^2018 + y^2019. Rút gọn các biểu thức đã cho (với điều kiện đã xác định). Đề thi cung cấp lời giải chi tiết và thang điểm để học sinh có thể tự kiểm tra và cải thiện kiến thức của mình. Hy vọng rằng đề thi sẽ giúp các em tự tin và thành công trong kỳ thi học kỳ 1 sắp tới. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra đánh giá chất lượng cuối học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội; đề thi được biên soạn theo cấu trúc 100% tự luận với 05 bài toán, thời gian học sinh làm bài 90 phút; kỳ thi được diễn ra vào thứ Bảy ngày 17 tháng 12 năm 2022. Trích dẫn Đề học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Giảng Võ – Hà Nội : + Cho 2 đa thức sau: A = 4×3 + 11×2 + 5x + 5 và B = x + 2. a) Thực hiện phép chia đa thức A cho đa thức B. b) Tìm các giá trị nguyên của x để đa thức A chia hết cho đa thức B. c) Cho đa thức C = x3 – 10x + 4a2 – 13 (a là tham số). Tìm số a để C chia hết cho B. + Một nhà địa chính cần đo đạc miếng đất như hình vẽ. Biết AB = 24m, AD = 30m, BC = 37m. Đoạn CD bị cái ao ngăn cách không thể đi qua đo được. Em hãy giúp nhà địa chính đo khoảng cách giữa 2 điểm C và D của mảnh đất. + Cho tam giác ABC vuông tại A và điểm M là trung điểm của đoạn thẳng BC. Vẽ MF vuông góc AB (F thuộc AB), ME vuông góc AC (E thuộc AC). a) Chứng minh rằng: Tứ giác AEMF là hình chữ nhật. b) Vẽ điểm N đối xứng với điểm M qua điểm F. Chứng minh rằng tứ giác AMBN là hình thoi. c) Gọi I là giao điểm hai đường chéo hình chữ nhật AEMF, đường thẳng BI cắt đường thẳng EM tại điểm K và gọi điểm H là hình chiếu của điểm K xuống đường thẳng NB. Chứng minh tam giác AMH cân.
Đề học kỳ 1 Toán 8 năm 2022 - 2023 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra cuối học kỳ 1 môn Toán 8 năm học 2022 – 2023 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 12 năm 2022. Trích dẫn Đề học kỳ 1 Toán 8 năm 2022 – 2023 trường THCS Thăng Long – Hà Nội : + Phòng học bộ môn Tin học tại một trường Trung học Cơ sở là hình chữ nhật có chiều dài 9m, chiều rộng 6m. Diện tích làm việc tối thiểu cho mỗi học sinh là 1,5m2. Hỏi phòng học đó có thể chứa được tối đa bao nhiêu học sinh mỗi tiết học? + Cho tam giác ABC cân tại A. Lấy điểm K đối xứng với điểm A qua đoạn thẳng BC. Gọi I là giao điểm của AK và BC. a) Chứng minh: Tử giác ABKC là hình thoi. b) Gọi M là trung điểm AC. Lấy điểm N đối xứng với điểm I qua M. Chứng minh: Tứ giác ANCI là hình chữ nhật. c) Gọi D là trung điểm AB. Chứng minh: BN, AI, DM đồng quy. + Tìm giá trị lớn nhất của biểu thức: B = (x² – x + 5)/(x² – x + 1).
Đề tham khảo học kì 1 Toán 8 năm 2022 - 2023 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề tham khảo kiểm tra cuối học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kì 1 Toán 8 năm 2022 – 2023 trường THCS Hai Bà Trưng – TP HCM : + Bạn An mua xe đạp có giá niêm yết là 6 500 000 đồng, cửa hàng đang giảm giá 10%, An có thẻ VIP nên được giảm thêm 5% trên giá đã giảm. Hỏi bạn An phải trả bao nhiêu tiền? + Kết thúc học kì I, một nhóm gồm 11 bạn tổ chức đi du lịch (chi phí chuyến đi chia đều cho mỗi người). Sau khi đã hợp đồng xong, đến khi tính tiền có 2 bạn do hoàn cảnh khó khăn nên mỗi bạn chỉ đóng góp 100 000 đồng. Vì vậy, mỗi bạn còn lại phải trả thêm 50 000 đồng so với dự kiến ban đầu. Hỏi tổng chi phí chuyến đi là bao nhiêu tiền? + Một miếng đất hình chữ nhật ABCD được chia làm 3 phần như hình vẽ: phần nhà ở là hình chữ nhật, phần vườn hoa là hình vuông có cạnh 4m, phần trồng rau là hình chữ nhật có diện tích 70m2 và chiều rộng là 3,5m. Tính diện tích phần nhà ở?
Đề tham khảo học kì 1 Toán 8 năm 2022 - 2023 trường THCS Kiến Thiết - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề tham khảo kiểm tra cuối học kì 1 môn Toán 8 năm học 2022 – 2023 trường THCS Kiến Thiết, quận 3, thành phố Hồ Chí Minh; đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án, hướng dẫn giải chi tiết và thang chấm điểm. Trích dẫn Đề tham khảo học kì 1 Toán 8 năm 2022 – 2023 trường THCS Kiến Thiết – TP HCM : + Bạn Nam và mẹ đến một cửa hàng để tìm mua laptop và thấy giá niêm yết của laptop đó là 13.500.000 đồng. Do cửa hàng có đợt khuyến mãi nên có thông báo lần đầu giảm giá 10%, sau đó lại giảm thêm 5% trên giá đã giảm. Vậy sau hai đợt giảm giá thì giá của laptop bạn Nam và mẹ muốn mua là bao nhiêu? + Một người thợ làm bánh thiết kế một chiếc bánh cưới có 3 tầng hình tròn như hình bên. Tầng đáy có đường kính CH là 30cm. Tầng thứ 1 có đường kính EF là 10cm. Em hãy tính độ dài đường kính DG của tầng 2, nếu biết rằng EF // CH và D, G lần lượt là trung điểm của EC và FH? + Cho ΔABC cân tại A. Gọi E, F, H lần lượt là trung điểm các cạnh AB, AC, BC a/ Chứng minh EFCB là hình thang cân b/ Chứng minh BEFH là hình bình hành c/ Từ A kẻ Ax song song BC cắt HF tại D. Chứng minh ADCH là hình chữ nhật.