Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối lăng trụ - Trần Đình Cư

Tài liệu gồm 34 trang với các dạng toán về thể tích khối lăng trụ: lăng trụ đứng, lăng trụ đều, lăng trụ xiên, các bài tập có đáp án và lời giải chi tiết. THỂ TÍCH KHỐI LĂNG TRỤ 1. Định nghĩa: Cho hai mặt song song (α) và (α’). Trên (α) ta lấy đa giác lồi A1A2 … An, qua các đỉnh này ta dựng các đường thẳng song song cắt (α’) tại A’1, A’2 … A’n. Hình bao gồm hai đa giác A1A2 … An, A’1A’2 … A’n và các hình bình hành A1A2A’2A’1, … được gọi là hình lăng trụ. Nhận xét : + Các mặt bên của hình lăng trụ bằng nhau và song song với nhau. + Các mặt bên là các hình bình hành. + Hai đáy hình lăng trụ là hai đa giác bằng nhau. 2. Hình lăng trụ đứng – hình lăng trụ đều, hình hộp chữ nhật và hình lập phương a. Hình lăng trụ đứng: là hình lăng trụ có cạnh bên vuông góc với đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ. Lúc đó các mặt bên của hình lăng trụ đứng là các hình chữ nhật. b. Hình lăng trụ đều: là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của lăng trụ đều là các hình chữ nhật bằng nhau. Ví dụ: hình lăng trụ tam giác đều, tứ giác đều … thì ta hiểu là hình lăng trụ đều. [ads] c. Hình hộp: Là hình lăng trụ có đáy là hình bình hành. d. Hình hộp đứng: là hình lăng trụ đứng có đáy là hình bình hành. e. Hình hộp chữ nhật: là hình hộp đứng có đáy là hình chữ nhật. f. Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương (hay hình chữ nhật có ba kích thước bằng nhau được gọi là hình lập phương). Nhận xét : + Hình hộp chữ nhật ⇒ hình lăng trụ đứng (Có tất cả các mặt là hình chữ nhật). + Hình lập phương ⇒ hình lăng trụ đều (tất cả các cạnh bằng nhau). + Hình hộp đứng ⇒ hình lăng trụ đứng (mặt bên là hình chữ nhật, mặt đáy là hình bình hành). 3. Thể tích khối lăng trụ Thể tích khôi lăng trụ được tính theo công thức: V = B.h với B là diện tích đáy và h là chiều cao. 4. So sánh khối lăng trụ đứng và khối lăng trụ đều

Nguồn: toanmath.com

Đọc Sách

Một số bài toán cực trị hình học trong không gian
Tài liệu gồm 53 trang, được biên soạn bởi thầy giáo Phạm Văn Nghiệp, tuyển chọn một số bài toán cực trị hình học trong không gian có đáp án và lời giải chi tiết; tài liệu hỗ trợ học sinh lớp 12 trong quá trình học thêm chương trình Toán 12 phần Hình học chương 1: Khối đa diện và thể tích của chúng. Trích dẫn tài liệu một số bài toán cực trị hình học trong không gian: +  Một khối gỗ hình hộp chữ nhật có kích thước thoả mãn: Tổng của chiều dài và chiều rộng bằng 12 cm; tổng của chiều rộng và chiều cao là 24 cm. Hỏi thể tích lớn nhất mà khối hộp có thể đạt được là bao nhiêu? + Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng? + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 0 45 góc giữa SB và mặt đáy bằng 0 0 90. Xác định để thể tích khối chóp S ABC đạt giá trị lớn nhất. + Cho hình chóp S ABC có SA ABC SB a 2 hai mặt phẳng SAB và SBC vuông góc với nhau. Góc giữa SC và SAB bằng 45o góc giữa SB và mặt đáy bằng 0 90 o o. Xác định để thể tích khối chóp S ABC lớn nhất. + Cho hình chóp S ABCD có đáy ABCD là hình thang cân đáy AB nội tiếp đường tròn tâm O bán kính R. Biết rằng AC BD tại I đồng thời I là hình chiếu của S lên ABCD và SAC vuông tại S. Thể tích lớn nhất của khối chóp S ABCD theo R là?
Chuyên đề khối đa diện và thể tích khối đa diện - Nguyễn Hoàng Việt
Tài liệu gồm 150 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp kiến thức cần nhớ, ví dụ minh họa và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện (Toán 12 phần Hình học chương 1). Chương 1 . KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN 2. §1 – KHÁI NIỆM VỀ KHỐI ĐA DIỆN 2. A KIẾN THỨC CẦN NHỚ 2. B BÀI TẬP TRẮC NGHIỆM 2. + Dạng 1. Nhận biết hình đa diện 2. + Dạng 2. Đếm số cạnh, số mặt của một hình đa diện 4. + Dạng 3. Phân chia, lắp ghép khối đa diện 5. §2 – KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU 8. A KIẾN THỨC CẦN NHỚ 8. B BÀI TẬP TRẮC NGHIỆM 11. + Dạng 1. Nhận biết khối đa diện lồi, khối đa diện đều 11. + Dạng 2. Số mặt phẳng đối xứng của hình đa diện 14. §3 – THỂ TÍCH KHỐI CHÓP 18. A LÝ THUYẾT CẦN NHỚ 18. B MỘT SỐ VÍ DỤ MINH HỌA 20. + Dạng 1. Khối chóp có cạnh bên vuông góc với đáy 20. + Dạng 2. Thể tích khối chóp có mặt bên vuông góc với đáy 47. + Dạng 3. Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy 48. + Dạng 4. Khối chóp đều 56. + Dạng 5. Khối chóp biết hình chiếu của đỉnh xuống mặt đáy 70. C BÀI TẬP TRẮC NGHIỆM 71. §4 – THỂ TÍCH KHỐI LĂNG TRỤ 83. A LÝ THUYẾT CẦN NHỚ 83. B MỘT SỐ VÍ VỤ MINH HỌA 83. + Dạng 1. Khối lăng trụ đứng tam giác 83. + Dạng 2. Khối lăng trụ đứng tứ giác 85. + Dạng 3. Khối lăng trụ xiên 87. C BÀI TẬP TRẮC NGHIỆM 89. §5 – PHÂN CHIA KHỐI ĐA DIỆN, TỈ SỐ THỂ TÍCH 104. A LÝ THUYẾT CẦN NHỚ 104. B MỘT SỐ VÍ DỤ MINH HỌA 105. + Dạng 1. Tỉ số thể tích trong khối chóp 105. + Dạng 2. Tỉ số thể tích trong khối lăng trụ 108. C BÀI TẬP TRẮC NGHIỆM 112. §6 – MỘT SỐ ĐỀ ÔN TẬP 122. A ĐỀ ÔN SỐ 1 122. B ĐỀ ÔN SỐ 2 130. C ĐỀ ÔN SỐ 3 138.
Chuyên đề khối đa diện và thể tích khối đa diện - Phạm Hùng Hải
Tài liệu gồm 129 trang, được biên soạn bởi thầy giáo Phạm Hùng Hải, trình bày kiến thức cần nhớ, phân dạng và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích khối đa diện, giúp học sinh lớp 12 rèn luyện khi học chương trình Toán 12 phần Hình học chương 1; các bài tập trong tài liệu được chọn lọc từ các đề thi thử THPT môn Toán của các trường THPT chuyên trên cả nước. Chương 1. KHỐI ĐA DIỆN VÀ THỂ TÍCH KHỐI ĐA DIỆN 1. §1 – KHÁI NIỆM VỀ KHỐI ĐA DIỆN 1. A KIẾN THỨC CẦN NHỚ 1. B BÀI TẬP TRẮC NGHIỆM 1. + Dạng 1.1: Nhận biết hình đa diện 1. + Dạng 1.2: Đếm số cạnh, số mặt của một hình đa diện 2. + Dạng 1.3: Phân chia, lắp ghép khối đa diện 3. §2 – KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU 5. A KIẾN THỨC CẦN NHỚ 5. B BÀI TẬP TRẮC NGHIỆM 9. + Dạng 2.4: Nhận biết khối đa diện lồi, khối đa diện đều 9. + Dạng 2.5: Số mặt phẳng đối xứng của hình đa diện 10. §3 – THỂ TÍCH KHỐI CHÓP 12. A LÝ THUYẾT CẦN NHỚ 12. B MỘT SỐ VÍ DỤ MINH HỌA 15. + Dạng 3.6: Khối chóp có cạnh bên vuông góc với đáy 15. + Dạng 3.7: Thể tích khối chóp có mặt bên vuông góc với đáy 53. + Dạng 3.8: Khối chóp có hai mặt phẳng chứa đỉnh cùng vuông góc với đáy 54. + Dạng 3.9: Khối chóp đều 66. + Dạng 3.10: Khối chóp biết hình chiếu của đỉnh xuống mặt đáy 84. C BÀI TẬP TRẮC NGHIỆM 86. §4 – THỂ TÍCH KHỐI LĂNG TRỤ 90. A LÝ THUYẾT CẦN NHỚ 90. B MỘT SỐ VÍ VỤ MINH HỌA 90. + Dạng 4.11: Khối lăng trụ đứng tam giác 90. + Dạng 4.12: Khối lăng trụ đứng tứ giác 93. + Dạng 4.13: Khối lăng trụ xiên 96. C BÀI TẬP TRẮC NGHIỆM 99. §5 – PHÂN CHIA KHỐI ĐA DIỆN, TỈ SỐ THỂ TÍCH 104. A LÝ THUYẾT CẦN NHỚ 104. B MỘT SỐ VÍ DỤ MINH HỌA 105. + Dạng 5.14: Tỉ số thể tích trong khối chóp 105. + Dạng 5.15: Tỉ số thể tích trong khối lăng trụ 110. C BÀI TẬP TRẮC NGHIỆM 115. §6 – MỘT SỐ ĐỀ ÔN TẬP 119. A ĐỀ ÔN SỐ 1 119. B ĐỀ ÔN SỐ 2 121. C ĐỀ ÔN SỐ 3 124.
Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng
Tài liệu gồm 13 trang, được biên soạn bởi tác giả Hoàng Xuân Bính (giáo viên Toán trường THPT chuyên Biên Hòa, Hà Nam), hướng dẫn phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường thẳng và mặt phẳng. Trong bài toán thuộc chủ đề khoảng cách thì ta thấy thường xuất hiện bài toán tính khoảng cách giữa hai đường thẳng chéo nhau. Do đó, mình viết chuyên đề này để giúp các thầy cô và các em học sinh có một hướng tiếp cận khi giải quyết bài toán này. I. Kiến thức cơ bản cần nhớ II. Nội dung chuyên đề Để giúp học sinh và các thầy cô có một cách tiếp cận về loại bài tập này, tôi xin trình bày: Phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau nhờ kĩ thuật dựng song song giữa đường với mặt. a) Phương pháp: Để tính khoảng cách giữa hai đường thẳng chéo nhau trong chuyên đề này, chúng ta sử dụng phương pháp đường song song với mặt: Cho a, b là hai đường thẳng chéo nhau thì ta luôn có: d(a;b) = d(a;(P)) với b ⊂ P và a // (P). b) Các tính chất hình học phẳng thường được sử dụng: – Loại 1: Khai thác tính chất hình bình hành (hoặc trong các hình hình thoi, hình chữ nhật, hình vuông): Trong một hình bình hành thì hai cặp cạnh đối diện luôn song song với nhau. – Loại 2: Khai thác tính chất đường trung bình của tam giác. Chú ý: + Để khai thác tính chất đường trung bình trong tam giác, ta chú ý tới các yếu tố trung điểm có sẵn trong đề bài từ đó xây dựng thêm một trung điểm mới để thiết lập đường trung bình từ đó xác định được yếu tố song song mà ta sẽ chuyển đổi được khoảng cách giữa đường với đường về đường với mặt. + Với bài toán có liên quan tới bài toán về hình hộp hoặc lăng trụ tam giác thì ta chú ý một tính chất quen thuộc của lăng trụ là: tâm của các mặt bên cũng chính là trung điểm của hai đường chéo của mặt bên đó. III. Bài tập minh họa Trong chuyên đề này, tôi xin chia các bài toán áp dụng được phương pháp này thành 2 dạng: + Dạng 1. Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về hình chóp. + Dạng 2: Các bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong các bài toán về lăng trụ. IV. Bài tập tự luyện