Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối lăng trụ - Trần Đình Cư

Tài liệu gồm 34 trang với các dạng toán về thể tích khối lăng trụ: lăng trụ đứng, lăng trụ đều, lăng trụ xiên, các bài tập có đáp án và lời giải chi tiết. THỂ TÍCH KHỐI LĂNG TRỤ 1. Định nghĩa: Cho hai mặt song song (α) và (α’). Trên (α) ta lấy đa giác lồi A1A2 … An, qua các đỉnh này ta dựng các đường thẳng song song cắt (α’) tại A’1, A’2 … A’n. Hình bao gồm hai đa giác A1A2 … An, A’1A’2 … A’n và các hình bình hành A1A2A’2A’1, … được gọi là hình lăng trụ. Nhận xét : + Các mặt bên của hình lăng trụ bằng nhau và song song với nhau. + Các mặt bên là các hình bình hành. + Hai đáy hình lăng trụ là hai đa giác bằng nhau. 2. Hình lăng trụ đứng – hình lăng trụ đều, hình hộp chữ nhật và hình lập phương a. Hình lăng trụ đứng: là hình lăng trụ có cạnh bên vuông góc với đáy. Độ dài cạnh bên được gọi là chiều cao của hình lăng trụ. Lúc đó các mặt bên của hình lăng trụ đứng là các hình chữ nhật. b. Hình lăng trụ đều: là hình lăng trụ đứng có đáy là đa giác đều. Các mặt bên của lăng trụ đều là các hình chữ nhật bằng nhau. Ví dụ: hình lăng trụ tam giác đều, tứ giác đều … thì ta hiểu là hình lăng trụ đều. [ads] c. Hình hộp: Là hình lăng trụ có đáy là hình bình hành. d. Hình hộp đứng: là hình lăng trụ đứng có đáy là hình bình hành. e. Hình hộp chữ nhật: là hình hộp đứng có đáy là hình chữ nhật. f. Hình lăng trụ đứng có đáy là hình vuông và các mặt bên đều là hình vuông được gọi là hình lập phương (hay hình chữ nhật có ba kích thước bằng nhau được gọi là hình lập phương). Nhận xét : + Hình hộp chữ nhật ⇒ hình lăng trụ đứng (Có tất cả các mặt là hình chữ nhật). + Hình lập phương ⇒ hình lăng trụ đều (tất cả các cạnh bằng nhau). + Hình hộp đứng ⇒ hình lăng trụ đứng (mặt bên là hình chữ nhật, mặt đáy là hình bình hành). 3. Thể tích khối lăng trụ Thể tích khôi lăng trụ được tính theo công thức: V = B.h với B là diện tích đáy và h là chiều cao. 4. So sánh khối lăng trụ đứng và khối lăng trụ đều

Nguồn: toanmath.com

Đọc Sách

Chuyên đề khoảng cách từ điểm đến mặt phẳng - Trần Mạnh Tường
Tài liệu gồm 15 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách từ điểm đến mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng. Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song. Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. 3. Khoảng cách giữa hai mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. [ads] 4. Các phương pháp thường dùng để tính khoảng cách từ điểm đến mặt phẳng. a. Dùng định nghĩa. b. Phương pháp đổi điểm (dùng tỉ số khoảng cách). Khi sử dụng phương pháp này, ta nên cố gắng đưa việc tính khoảng cách từ 1 điểm đến mặt phẳng về việc tính khoảng cách từ chân đường cao của hình chóp hoặc lăng trụ đến mặt phẳng. c. Phương pháp thể tích. d. Một công thức thường dùng trong bài toán tính khoảng cách. II. BÀI TẬP VẬN DỤNG Tuyển tập 15 câu hỏi và bài toán trắc nghiệm tính khoảng cách từ điểm đến mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.
Chuyên đề khoảng cách giữa hai đường thẳng chéo nhau - Trần Mạnh Tường
Tài liệu gồm 12 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách giữa hai đường thẳng chéo nhau trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa Khoảng cách 2 đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó. 2. Các phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau Có 3 phương pháp thường dùng: a. Phương pháp 1 Dùng định nghĩa: + Xác định đoạn vuông góc chung AB của hai đường thẳng chéo nhau. + Tính độ dài đoạn AB. [ads] b. Phương pháp 2 + Chọn hoặc dựng 1 mặt phẳng (P) chứa 1 đường và song song với đường thẳng còn lại (chẳng hạn chứa b và song song với a). + Khi đó d(a;b) = d(a;(P)) = d(M;(P)) với M là điểm tùy ý trên đường thẳng a. c. Phương pháp 3 + Chọn hoặc dựng 2 mặt phẳng lần lượt chứa 1 đường thẳng và song song với đường thẳng còn lại. + Khi đó d(a;b) = d((P);(Q)) = d(H;(P)) = d(K;(Q)) với H thuộc (Q) và K thuộc (P). d. Sử dụng phương pháp vectơ II. BÀI TẬP VẬN DỤNG Chọn lọc 10 câu hỏi và bài toán trắc nghiệm tính khoảng cách giữa hai đường thẳng chéo nhau, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.
Chuyên đề góc giữa hai mặt phẳng - Trần Mạnh Tường
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính góc giữa hai mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa : Góc giữa hai mặt phẳng là góc giữa hai đường thẳng bất kì, lần lượt vuông góc với hai mặt phẳng đó. 2. Một số phương pháp tính góc giữa hai mặt phẳng : Có 3 phương pháp sau đây hay được sử dụng để tính giá trị góc giữa hai mặt phẳng: Phương pháp 1 : Dùng định nghĩa. Kinh nghiệm: Muốn sử dụng được phương pháp này thì ta phải quan sát, phán đoán xem với đặc điểm đã cho của bài toán thì ta có thể xác định hoặc dựng được 2 đường thẳng lần lượt vuông góc với 2 mặt phẳng mà bài toán yêu cầu tính góc giữa chúng hay không? [ads] Phương pháp 2 : Xác định góc. Ý tưởng của phương pháp này là ta dựng rõ hình hài của góc giữa hai đường thẳng, sau đó dùng các hệ thức lượng để tính giá trị của góc này. Kinh nghiệm: Cách này thường dùng khi 2 mặt phẳng có thể xác định được giao tuyến và có các yếu tố vuông góc. Có 2 loại phương pháp khi sử dụng phương pháp này: + Phương pháp xác định góc loại 1. + Phương pháp xác định góc loại 2. Phương pháp 3 : Dùng khoảng cách. Bình luận: Phương pháp này có ưu điểm là ta không cần xác định rõ hình hài của góc giữa hai mặt phẳng, chỉ cần tính khoảng cách từ điểm đến mặt phẳng và điểm đến đường thẳng, các khoảng cách này lại cũng có thể tính thông qua tỉ số giữa diện tích tam giác với một cạnh hoặc tỉ số giữa thể tích một đa diện với diện tích của 1 mặt. II. VÍ DỤ MINH HỌA Bao gồm 12 câu hỏi và bài toán trắc nghiệm tính góc giữa hai mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.
Chuyên đề khối đa diện và thể tích của chúng - Phạm Hoàng Long
Tài liệu gồm 133 trang, được biên soạn bởi thầy giáo Phạm Hoàng Long, tóm tắt lý thuyết, công thức cần ghi nhớ và bài tập trắc nghiệm chuyên đề khối đa diện và thể tích của chúng, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán. Mục lục tài liệu chuyên đề khối đa diện và thể tích của chúng – Phạm Hoàng Long: Bài 1 . Khối đa diện. 1. Các định nghĩa. 2. Cách tính thể tích khối đa diện. 3. Nhắc lại kiến thức cũ. 3.1. Hệ thức trong tam giác. 3.2. Diện tích một số hình phẳng. 4. Các dạng bài tập nhận diện khối đa diện. + Dạng 1. Nhận diện các khối đa diện. + Dạng 2. Tính chất đối xứng của hình đa diện. + Dạng 3. Các tính chất khác của đa diện. + Dạng 4. Phân chia, lắp ghép khối đa diện. Bài 2 . Hình chóp. 1. Định nghĩa hình chóp. 2. Công thức. 3. Các dạng toán hình chóp. + Dạng 1. Khối chóp có một cạnh bên vuông góc với đáy. + Dạng 2. Khối chóp có một mặt bên vuông góc với đáy. + Dạng 3. Khối chóp đều. 3.1. Khối chóp tứ giác đều. 3.2. Khối chóp tam giác đều. 3.3. Các khối chóp đa giác đều khác. + Dạng 4. Khối tứ diện. + Dạng 5. Khối chóp khác. + Dạng 6. Tỉ lệ thể tích trong hình chóp. [ads] Bài 3 . Hình lăng trụ. 1. Định nghĩa hình lăng trụ. 2. Các dạng toán hình lăng trụ. + Dạng 1. Hình lập phương. + Dạng 2. Hình hộp chữ nhật. + Dạng 3. Lăng trụ đứng đáy tứ giác. 3.1. Đáy hình vuông. 3.2. Đáy hình bình hành – hình thoi. + Dạng 4. Lăng trụ đứng đáy tam giác. 4.1. Đáy tam giác thường. 4.2. Đáy tam giác vuông cân. 4.3. Đáy tam giác vuông. 4.4. Đáy tam giác đều. 4.5. Đáy tam giác cân. + Dạng 5. Hình hộp. + Dạng 6. Khối lăng trụ xiên. + Dạng 7. Tỉ lệ khối lăng trụ. Bài 4 . Ứng dụng và max – min (GTLN – GTNN).