Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD ĐT Bắc Ninh

Nội dung Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD ĐT Bắc Ninh Bản PDF Tháng 9 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Ninh tổ chức kỳ thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2019 – 2020, kỳ thi được diễn ra trong hai ngày liên tiếp 24/09/2019 và 25/09/2019. Đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh gồm tổng cộng 7 bài toán, thời gian làm bài ở mỗi ngày thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn đội tuyển dự thi HSG Quốc gia 2020 môn Toán sở GD&ĐT Bắc Ninh : + Cho một đa giác đều A1A2 … A20 có 10 đỉnh của đa giác được tô màu xanh, 10 đỉnh còn lại được tô màu đỏ. Ta nối các đỉnh với nhau. a) Gọi a là số các đoạn thẳng nối hai đỉnh màu đỏ liên tiếp, b là số các đoạn thẳng nối hai đỉnh màu xanh liên tiếp. Chứng minh a = b. b) Xét tập hợp S gồm đường chéo A1A4 và tất cả các đường chéo khác của đa giác mà có cùng độ dài với nó. Chứng minh trong tập hợp đó, số đường chéo có hai đầu là màu đỏ bằng với số đường chéo có hai đầu là màu xanh. Gọi k là số đường chéo có hai đầu là màu xanh trong, tìm tất cả các giá trị có thể có của k. [ads] + Cho tam giác nhọn ABC, D là một điểm bất kì trên cạnh BC. Trên cạnh AC, AB lần lượt lấy các điểm E, F sao cho ED = EC, FD = FB. Gọi I, J, K lần lượt là tâm đường tròn nội tiếp các tam giác ABC, BDF, CDE. a) Gọi H là trực tâm của tam giác JDK. Chứng minh rằng tứ giác IJHK nội tiếp. b) Chứng minh rằng khi D chuyển động trên BC, đường tròn ngoại tiếp tam giác IJK luôn đi qua một điểm cố định khác điểm I. + Cho hai dãy số (un), (vn) xác định như sau u0 = a, v0 = b với hằng số thực a, b cho trước thỏa mãn 0 < a < b và un+1 = (un + vn)/2, vn+1 = √un+1.vn với mọi số tự nhiên n. a) Chứng tỏ hai dãy đã cho đều hội tụ và có giới hạn bằng nhau. b) Tìm giới hạn đó theo a, b.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An - Gia Lai
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6.
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất.
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày 2)
Đề thi chọn đội tuyển tham dự kỳ thi chọn HSG Quốc gia 2018 sở GD và ĐT Quảng Ngãi (Ngày thi thứ hai) gồm 3 bài toán tự luận, thời gian làm bài 180 phút, đề có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trên một đường thẳng có 20 điểm P1, P2, … P20 được sắp theo thứ tự đó, mỗi điểm sẽ được tô bởi một trong hai màu xanh hoặc đỏ. Hỏi có bao nhiêu cách tô màu để cho nếu số các điểm liền kề được tô màu giống nhau thì luôn là một số lẻ? [ads] + Cho P(x) là một đa thức hệ số nguyên và năm số nguyên phân biệt x1, x2, x3, x4, x5 thỏa điều kiện P(xi) = 5 với i = 1, 2, 3, 4, 5. Chứng minh rằng không tồn tại số nguyên n nào để -6 ≤ P(n) ≤ 4 hoặc 6 ≤ P(n) ≤ 16. + Cho x1, x2, … xk; y1, y2, … yn là các số nguyên phân biệt (với k, n ∈ Z*) sao cho tồn tại đa thức hệ số nguyên P(x) thỏa điều kiện: P(x1) = P(x2) = …. = P(xk) = 58 và P(y1) = P(y2) = …. = P(yn) = 2017 Xác định giá trị lớn nhất của kn.