Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thừa Thiên Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 04 năm 2022. Trích dẫn đề học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thừa Thiên Huế : + Cho các số thực a, b, c thỏa mãn a khác 0 và 2a + 3b + 6c = 0. Chứng minh rằng phương trình ax2 + bx + c = 0 có hai nghiệm phân biệt x1, x2 và tìm giá trị nhỏ nhất của biểu thức |x1 – x2|. + Tìm các cặp nghiệm nguyên dương (x;y) thỏa mãn phương trình: x2 + y2 + 2(1 + y)x = 14y – 1. + Cho nửa đường tròn đường kính BC = 2R và A là điểm di động trên nửa đường tròn đó. Gọi D là hình chiếu vuông góc của A lên BC và M, N lần lượt là tâm đường tròn nội tiếp các tam giác ABD, ACD. a) Chứng minh: CN vuông góc với AM. b) Chứng minh: DMN và DBA là hai tam giác đồng dạng. c) Gọi d là đường thẳng đi qua A và vuông góc với MN. Chứng minh rằng d luôn đi qua một điểm cố định. d) Tìm vị trí của điểm A để đoạn MN có độ dài lớn nhất và tính độ dài lớn nhất đó theo R.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Chi Lăng - Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng GD&ĐT Chi Lăng, tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 15 tháng 01 năm 2022.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Thanh Oai – Hà Nội.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.