Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tốt nghiệp THPT QG 2020 môn Toán trường THPT Tiên Du 1 - Bắc Ninh

Ngày … tháng 06 năm 2020, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp THPT Quốc gia môn Toán năm học 2019 – 2020. Đề thi thử tốt nghiệp THPT QG 2020 môn Toán trường THPT Tiên Du 1 – Bắc Ninh mã đề 202 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, cấu trúc đề bám sát đề tham khảo tốt nghiệp THPTQG 2020 môn Toán của Bộ GD&ĐT. Trích dẫn đề thi thử tốt nghiệp THPT QG 2020 môn Toán trường THPT Tiên Du 1 – Bắc Ninh : + Số ca nhiễm Covid – 19 trong cộng đồng ở một tỉnh vào ngày thứ x trong một giai đoạn được ước tính theo công thức f(x) = A.e^rx trong đó A là số ca nhiễm ở ngày đầu của giai đoạn, r là tỷ lệ gia tăng số ca nhiễm hàng ngày của giai đoạn đó và trong cùng một giai đoạn thì r không đổi. Giai đoạn thứ nhất tính từ ngày tỉnh đó có 9 ca bệnh đầu tiên và không dùng biện pháp phòng chống lây nhiễm nào thì đến ngày thứ 6 số ca bệnh của tỉnh là 180 ca. Giai đoạn thứ hai (kể từ ngày thứ 7 trở đi) tỉnh đó áp dụng các biện pháp phòng chống lây nhiễm nên tỷ lệ gia tăng số ca nhiễm hàng ngày giảm đi 10 lần so với giai đoạn trước. Đến ngày thứ 6 của giai đoạn hai thì số ca mắc bệnh của tỉnh đó gần nhất với số nào sau đây? [ads] + Cho hai hình chóp tam giác đều có cùng chiều cao. Biết đỉnh của hình chóp này trùng với tâm của đáy hình chóp kia, mỗi cạnh bên của hình chóp này đều cắt một cạnh bên của hình chóp kia. Cạnh bên có độ dài bằng a của hình chóp thứ nhất tạo với đường cao một góc 30 độ, cạnh bên của hình chóp thứ hai tạo với đường cao một góc 45 độ. Tính thể tích phần chung của hai hình chóp đã cho? + Cho biểu thức P = 3^(y – 2x + 1).(1 + 4^(2x – y – 1)) và biểu thức Q = log (y + 3 – 2x) 3y. Giá trị nhỏ nhất của y để tồn tại x thỏa mãn đồng thời P ≥ 1 và Q ≥ 1 là số y0. Khẳng định nào sau đây là đúng? A. 4y0 + 1 là số hữu tỷ. B. y0 là số vô tỷ. C. y0 là số nguyên dương. D. 3y0 + 1 là số tự nhiên chẵn.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2022 môn Toán trường THPT chuyên Phan Bội Châu, thành phố Vinh, tỉnh Nghệ An (mã đề 002). Trích dẫn đề thi thử TN THPT 2022 môn Toán trường chuyên Phan Bội Châu – Nghệ An : + Cho hàm số y = f(x) là hàm đa thức bậc bốn, có đồ thị nhận đường thẳng x = -3,5 làm trục đối xứng. Biết diện tích hình phẳng của phần giới hạn bởi đồ thị hàm số y = f(x), y = f'(x) và hai đường thẳng x = -5, x = -2 có giá trị là 127/50 (hình vẽ bên). Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) và trục hoành bằng? + Từ một tấm tôn hình tam giác đều cạnh bằng 6m, ông A cắt thành một tấm tôn hình chữ nhật và cuộn lại được một cái thùng hình trụ (như hình vẽ). Ông A làm được cái thùng có thể tích tối đa là V (vật liệu làm nắp thùng coi không liên quan). Giá trị của V thỏa mãn? + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(3;-1;1), hai đỉnh B và C thuộc trục Oz và AA1 = 1 (C không trùng O). Biết u = (a;b;1) là một véctơ chỉ phương của đường thẳng A1C. Giá trị của a2 + b2 bằng?
Đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT môn Toán lần 2 năm học 2021 – 2022 trường THPT Trần Quốc Tuấn, tỉnh Quảng Ngãi; đề thi có đáp án mã đề 001 002 003 004 005 006 007 008 009 010 011 012. Trích dẫn đề thi thử Toán TN THPT 2022 lần 2 trường THPT Trần Quốc Tuấn – Quảng Ngãi : + Trong không gian với hệ tọa độ Oxyz cho các mặt phẳng P x y z  2 2 1 0 Q x y z 2 2 1 0. Gọi S là mặt cầu có tâm thuộc trục hoành, đồng thời S cắt mặt phẳng P theo giao tuyến là một đường tròn có bán kính bằng 3 và S cắt mặt phẳng Q theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu S thỏa yêu cầu. + Một hộp đựng 15 viên bi khác nhau trong đó có 8 viên bi xanh, 5 viên bi đỏ và 2 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp trên. Tính xác suất để trong 6 viên bi lấy ra có ít nhất 1 viên màu vàng và không quá 4 viên bi đỏ. + Trong không gian với hệ tọa độ Oxyz cho mặt phẳng đi qua điểm M 1 2 3 và cắt các tia Ox Oy Oz lần lượt tại A B C sao cho độ dài OA OB OC theo thứ tự tạo thành một cấp số nhân có công bội bằng 3. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng.
Đề thi thử Toán tốt nghiệp THPT 2022 trường Nguyễn Bỉnh Khiêm - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp Trung học Phổ thông năm 2022 trường THPT Nguyễn Bỉnh Khiêm, tỉnh Đắk Lắk; đề thi có đáp án mã đề 887 047 987 508. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 trường Nguyễn Bỉnh Khiêm – Đắk Lắk : + Cho hàm số bậc bốn y fx có đồ thị là đường cong trong hình vẽ bên. Biết hàm số f x đạt cực trị tại ba điểm 123 xxx thỏa mãn 1 23 x xx 1 2. Gọi 1 S và 2 S là diện tích của hai hình phẳng được gạch trong hình bên. Tỉ số 1 2 S S bằng? + Trong không gian tọa độ Oxyz cho mặt cầu 2 2 2 5 S x 1 y 1 z 6 mặt phẳng P x y z 1 0 và điểm A 1 1 1. Điểm M thay đổi trên đường tròn giao tuyến của (P) và (S). Giá trị lớn nhất của P AM là? + Trong không gian với hệ trục tọa độ Oxyz cho bốn điểm A 1 1 4 B 5 1 3 C 3 1 5 và điểm D m 2 2 với m là tham số. Xác định m để bốn điểm ABC và D tạo thành bốn đỉnh của hình tứ diện.
Đề thi thử tốt nghiệp THPT 2022 môn Toán cụm trường THPT TP Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2021 – 2022 môn Toán cụm trường THPT thành phố Nam Định, tỉnh Nam Định. Trích dẫn đề thi thử tốt nghiệp THPT 2022 môn Toán cụm trường THPT TP Nam Định : + Trong không gian Oxyz, cho hai điểm A(-1;2;4), B(-1;-2;2) và mặt phẳng (P): z – 1 = 0. Điểm M(a;b;c) thuộc mặt phẳng (P) sao cho tam giác MAB vuông tại M và diện tích tam giác MAB nhỏ nhất. Tính a3 + b3 + c3. + Trên tập hợp các số phức, xét phương trình z2 – 2mz + 8m – 12 = 0 (m là tham số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 và z2 thỏa mãn |z1| + |z2| = 4? + Cho hình chóp S.ABC có đáy ABC là tam giác đều, hình chiếu vuông góc của đỉnh S trên mặt đáy là trung điểm H của cạnh AB. Biết SH và mặt phẳng (SAC) vuông góc với mặt phẳng (SBC). Thể tích khối chóp S.ABC bằng?