Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định

Nội dung Đề khảo sát chọn HSG lớp 7 môn Toán năm 2018 2019 phòng GD ĐT Xuân Trường Nam Định Bản PDF - Nội dung bài viết Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định Đề khảo sát chọn HSG Toán lớp 7 năm 2018 – 2019 phòng GD&ĐT Xuân Trường – Nam Định bao gồm một trang đề thi với năm bài toán tự luận. Thời gian làm bài là 120 phút. Đề thi được tổ chức nhằm tuyển chọn các em học sinh giỏi môn Toán lớp 7 từ các trường THCS trên địa bàn huyện Xuân Trường, tỉnh Nam Định. Mục đích là để tuyên dương và khen thưởng cho những em học sinh xuất sắc, đồng thời thành lập đội tuyển học sinh giỏi Toán lớp 7 để tham gia kỳ thi học sinh Toán cấp tỉnh. Đề thi cũng đi kèm với lời giải chi tiết để giúp các em học sinh hiểu rõ hơn về cách giải các bài toán.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho đa thức F(x) = ax2 + bx + c trong đó a, b, c là các số hữu tỉ biết. Biết rằng F(0); F(1); F(2) đều có giá trị nguyên. Chứng minh rằng 2a là số nguyên. + Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC cân tại A, có ba góc đều là góc nhọn. Về phía ngoài của tam giác ABC vẽ các tam giác vuông cân: ABE vuông cân tại B, ACF vuông cân tại C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh: а) ЕAН = FAH. b) BI = CE và BI vuông góc với CE. c) Ba đường thẳng AH, CE, BF đồng quy.