Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức

Nội dung Một số phương pháp giải phương trình nghiệm nguyên Tạ Văn Đức Bản PDF - Nội dung bài viết Một số phương pháp giải phương trình nghiệm nguyênPhương pháp 1: Áp dụng tính chia hếtPhương pháp 2: Phương pháp lựa chọn ModuloPhương pháp 3: Sử dụng bất đẳng thứcPhương pháp 4: Phương pháp chặnPhương pháp 5: Sử dụng tính chất của số chính phươngPhương pháp 6: Phương pháp lùi vô hạnPhương pháp 7: Nguyên tắc cực hạnPhương pháp 8: Sử dụng mệnh đề cơ bản của số học Một số phương pháp giải phương trình nghiệm nguyên Trong môn Toán cấp Trung học Cơ sở, bài toán phương trình nghiệm nguyên là một chủ đề khá hay nhưng cũng khá khó đối với học sinh, dạng toán này thường xuyên xuất hiện trong các đề thi học sinh giỏi Toán lớp 8 – lớp 9. Để hỗ trợ việc bồi dưỡng học sinh giỏi Toán lớp 8 và Toán lớp 9, thầy Tạ Văn Đức đã biên soạn tài liệu giới thiệu một số phương pháp giải phương trình nghiệm nguyên. Dưới đây là khái quát về nội dung của tài liệu một số phương pháp giải phương trình nghiệm nguyên: Phương pháp 1: Áp dụng tính chia hết Phương trình dạng ax + by = c. Đưa về phương trình ước số. Phương pháp 2: Phương pháp lựa chọn Modulo Xét số dư hai vế. Sử dụng số dư để chỉ ra phương trình vô nghiệm. Phương pháp 3: Sử dụng bất đẳng thức Đối với các phương trình mà các biến có vai trò như nhau thì thường dùng phương pháp sắp xếp các biến. Áp dụng bất đẳng thức cổ điển. Áp dụng tính đơn điệu của từng vế. Dùng điều kiện delta ≥ 0 (hoặc delta' ≥ 0) để phương trình bậc hai có nghiệm. Phương pháp 4: Phương pháp chặn Chủ yếu dựa vào hai nhận xét sau: Không tồn tại n thuộc Z thỏa mãn a^2 < n^2 < (a + 1)^2 với a là một số nguyên. Nếu a^2 < n^2 < (a + 2)^2 (với a và n thuộc Z) thì n = a + 1. Phương pháp 5: Sử dụng tính chất của số chính phương Một số tính chất thường được sử dụng: Số chính phương không tận cùng bằng 2, 3, 7, 8. Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2. ... Phương pháp 6: Phương pháp lùi vô hạn Phương pháp này dùng để chỉ ra rằng ngoài nghiệm tầm thường x = y = z = 0 thì không còn nghiệm nào khác. Phương pháp 7: Nguyên tắc cực hạn Về mặt hình thức khác với phương pháp lùi vô hạn, nhưng về ý tưởng sử dụng thì tương tự, chứng minh phương trình ngoài nghiệm tầm thường không có nghiệm nào khác. Phương pháp 8: Sử dụng mệnh đề cơ bản của số học

Nguồn: sytu.vn

Đọc Sách

Các bài toán về số nguyên tố và hợp số
Nội dung Các bài toán về số nguyên tố và hợp số Bản PDF - Nội dung bài viết Các bài toán về số nguyên tố và hợp số Các bài toán về số nguyên tố và hợp số Tài liệu này được trích đoạn từ cuốn sách có tổng cộng 44 trang, nó giải thích về các bài toán liên quan đến số nguyên tố và số hợp. Phân tích cụ thể về tính chất của các số nguyên tố, các phương pháp kiểm tra số nguyên tố, cách phân tích phân tích mối quan hệ giữa số nguyên tố và số hợp. Nó cung cấp ví dụ và bài tập để người đọc hiểu và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu này cũng giúp người đọc nắm vững kiến thức căn bản về các số nguyên tố và hợp số.
Các bài toán về quan hệ chia hết trong tập hợp số
Nội dung Các bài toán về quan hệ chia hết trong tập hợp số Bản PDF - Nội dung bài viết Các bài toán về quan hệ chia hết trong tập hợp số Các bài toán về quan hệ chia hết trong tập hợp số Tài liệu này bao gồm một số bài toán thú vị về quan hệ chia hết trong tập hợp số. Những bài toán này giúp bạn hiểu rõ hơn về quy luật chia hết, cách xác định số chia và số bị chia, cũng như ứng dụng của chúng trong thực tế. Với 95 trang thông tin hữu ích, cuốn sách này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết các bài toán liên quan đến chia hết trong tập hợp số.
Các bài toán về ước và bội
Nội dung Các bài toán về ước và bội Bản PDF - Nội dung bài viết Các bài toán về ước và bội Các bài toán về ước và bội Tài liệu này bao gồm 44 trang và được trích đoạn từ một cuốn sách về các bài toán liên quan đến ước và bội. Các bài toán này có thể được áp dụng trong nhiều lĩnh vực khác nhau như toán học, khoa học máy tính, và kỹ thuật. Việc hiểu biết về các bài toán này sẽ giúp bạn phát triển kỹ năng giải quyết vấn đề và logic. Hãy cẩn thận khi giải quyết các bài toán này, vì chúng có thể đưa ra những giải pháp không ngờ đến.
Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo
Nội dung Phân dạng và phương pháp giải toán số học và tổ hợp Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Phân dạng và phương pháp giải toán số học và tổ hợp của Nguyễn Quốc Bảo Tài liệu được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, gồm 523 trang, chuyên về phân dạng và hướng dẫn phương pháp giải các bài toán chuyên đề số học và tổ hợp. Được sử dụng để bồi dưỡng học sinh giỏi Toán từ lớp 8 đến lớp 9, cũng như ôn tập cho kì thi tuyển sinh vào lớp 10 môn Toán. Phần đầu tiên của tài liệu tập trung vào các chủ đề số học trung học cơ sở như các bài toán về ước và bội, bao gồm cách tìm số ước của một số, tìm số nguyên n thỏa mãn điều kiện chia hết, và tìm số biết ƯCLN và BCNN của chúng. Ngoài ra, còn có các bài toán về phân số tối giản, liên quan đến phép chia có dư, phép chia hết, ƯCLN, BCNN, và ƯCLN của hai số theo thuật toán Ơ-clit. Chủ đề tiếp theo là các bài toán về quan hệ chia hết, trong đó hướng dẫn sử dụng tính chất của n số tự nhiên liên tiếp, phân tích thành nhân tử, tách tổng, hằng đẳng thức, xét số dư, phản chứng, quy nạp, nguyên lý Dirichlet, đồng dư, và định lý Fermat. Các bài toán trong phần này liên quan đến cấu tạo số và tính chia hết, đồng thời áp dụng vào các bài toán phức tạp hơn về đa thức. Tài liệu này giúp học sinh hiểu rõ hơn về cách phân loại và giải các bài toán số học và tổ hợp một cách logic và chính xác, từ đó nắm vững kiến thức và tự tin hơn khi giải các bài toán trong kì thi và cuộc sống hằng ngày.