Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2018 - 2019 trường THPT Quỳnh Thọ - Thái Bình

Đề thi HK1 Toán 11 năm học 2018 – 2019 trường THPT Quỳnh Thọ – Thái Bình mã đề 160 gồm 06 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án các mã đề 160, 253, 346, 432. Trích dẫn đề thi HK1 Toán 11 năm 2018 – 2019 trường THPT Quỳnh Thọ – Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD và AB = 2CD), M là trung điểm của cạnh SA, gọi (α) là mặt phẳng đi qua M và song song với mặt phẳng (SCD). Thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (α) là hình gì? A. Hình thang có tỉ số giữa độ dài đáy lớn và đáy bé bằng 4/3. B. Hình bình hành. C. Hình thang có đáy lớn có độ dài gấp đôi đáy bé. D. Hình thang có tỉ số giữa độ dài đáy lớn và đáy bé bằng 3/2. + Cho tứ diện ABCD, Gọi M là trung điểm của AD, G là trọng tâm tam giác ABC. Khi đó giao điểm của đường thẳng MG và mặt phẳng (BCD) là: A. Giao điểm của MG và DN với N là trung điểm của BC. B. Giao điểm của MG và BC. C. Giao điểm của MG và BD. D. Giao điểm của MG và DH với H là hình chiếu của D lên BC. [ads] + Xét các mệnh đề sau đây: (I): Có một và chỉ một mặt phẳng đi qua ba điểm phân biệt cho trước. (II): Có một và chỉ một mặt phẳng chứa hai đường thẳng cắt nhau. (III): Nếu hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất đi qua điểm chung đó. (IV): Tồn tại bốn điểm không cùng thuộc một mặt phẳng. (V): Có một và chỉ một mặt phẳng đi qua 1 điểm và 1 đường thẳng cho trước. Số mệnh đề đúng là?

Nguồn: toanmath.com

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.