Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang - Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc, đề thi có mã đề 132 gồm 05 trang với 40 câu trắc nghiệm, học sinh có 90 phút để làm bài thi, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 tháng 5 năm 2020 trường THPT Nguyễn Thị Giang – Vĩnh Phúc : + Tìm khẳng định đúng trong các khẳng định sau: A. Nếu hai mặt phẳng cùng song song với mặt phẳng thứ ba thì chúng song song với nhau. B. Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó phải đồng quy. C. Trong không gian, hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song với nhau. D. Nếu một đường thẳng song song với một mặt phẳng thì nó song song với một đường thẳng nào đó trong mặt phẳng đó. [ads] + Sau đợt nghỉ dịch Covid-19, từ ngày 04 tháng 5 năm 2020, học sinh trường THPT Nguyễn Thị Giang, tỉnh Vĩnh Phúc đi học trở lại. Nhà trường yêu cầu tất cả học sinh đều phải đeo khẩu trang. Qua khảo sát, lớp 11A có 16 học sinh nữ và 24 học sinh nam, trong đó chỉ có một nửa số học sinh nữ và một nửa số học sinh nam đeo khẩu trang theo quy định. Nếu chọn ngẫu nhiên một học sinh của lớp 11A để kiểm tra, hãy tính xác suất để chọn được học sinh nữ hoặc học sinh đeo khẩu trang. + Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh bằng a, tam giác SAB đều. Gọi M là điểm trên cạnh AD sao cho AM = x với x thuộc (0;a). Mặt phẳng (alpha) qua M và song song với (SAB) lần lượt cắt các cạnh CB, CS, SD tại N, P, Q. Khi diện tích tứ giác MNPQ bằng 2x^2√3/9 thì x bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát môn Toán 11 năm học 2017 - 2018 trường THPT Quế Võ 2 - Bắc Ninh
Đề khảo sát môn Toán 11 năm học 2017 – 2018 trường THPT Quế Võ 2 – Bắc Ninh gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong hình lục giác đều ABCDEF tâm O, M và K là trung điểm của EF và BD. Phép quay tâm A góc quay 60◦ biến tam giác AFE thành: A. Tam giác AKD B. Tam giác AOC C. Tam giác DOB D. Tam giác F OB + Cho tứ diện ABCD có E là trung điểm của cạnh CD. Gọi M là trọng tâm các tam giác ABC, N là trung điểm của AE. Hỏi đường thẳng MN cắt bao nhiêu đường thẳng trong số 6 đường thẳng AB, BC, CA, AD, BD và CD? [ads] A. Cắt ba đường thẳng B. Cắt bốn đường thẳng C. Không đường thẳng nào cắt D. Cắt hai đường thẳng + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và AC, P là điểm trên cạnh AD sao cho AP = 2PD. Tìm giao điểm E của đường thẳng MP và mặt phẳng (BCD). A. E = BC ∩ MP B. E = BD ∩ MP C. E = CD ∩ MP D. E ≡ N
Đề thi KSCL Toán 11 lần 1 năm học 2017 - 2018 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 - 2018 trường THPT Hàn Thuyên - Bắc Ninh
Đề kiểm tra chất lượng Toán 11 lần 1 năm học 2017 – 2018 trường THPT Hàn Thuyên – Bắc Ninh gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án .
Đề khảo sát chất lượng lần 1 năm học 2017 - 2018 môn Toán 11 trường THPT Đồng Đậu - Vĩnh Phúc
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán 11 trường THPT Đồng Đậu – Vĩnh Phúc gồm 1 trang với 10 bài toán tự luận, mỗi câu tương ứng với 1 điểm, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Hàng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh được tính tại thời điểm t (giờ) trong 1 ngày bởi công thức h = 3cos(πt/8 + π/4) + 12 (0 < t ≤ 24). Hỏi mực nước biển cao nhất tại thời điểm nào? [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trọng tâm G(4/3; 1), trung điểm BC là M(1; 1), đường cao kẻ từ B thuộc đường thẳng có phương trình x + y – 7 = 0. Hãy xác định tọa độ các đỉnh A, B, C. + Trong mặt phẳng tọa độ Oxy, cho đường hai thẳng d: x – 2y + 6 = 0 và d’: x – 2y + 13 = 0. Tìm tọa độ vectơ v, biết |v| = √10, d’ là ảnh của d qua phép tịnh tiến theo vectơ v và vectơ v có hoành độ là số nguyên.