Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số bài toán về diện tích

Tài liệu gồm 69 trang, tuyển chọn một số bài toán về diện tích hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. MỘT SỐ KIẾN THỨC CẦN NHỚ 1. Các tính chất cơ bản của diện tích đa giác. Mỗi đa giác có một diện tích xác định, diện tích đa giác là một số dương. Diện tích đa giác có các tính chất sau: + Hai đa giác bằng nhau có diện tích bằng nhau. + Hình vuông cạnh có độ dài bằng 1(đvđd) thì diện tích là 1(đvdt), hình vuông đó được gọi là hình vuông đơn vị. + Nếu đa giác H được chia thành các đa giác H H H 1 2 n đôi một không có điểm chung trong. Khi đó ta được H H H H 1 2 n S S S S. + Nếu một đa giác H suy biến có H S 0 thì các đỉnh của đa giác cùng nằm trên một đường thẳng. 2. Diện tích tam giác. Cho tam giác ABC có các cạnh là a, b, c và abc p 2 là nửa chu vi. Gọi abc h h h là đường cao tương ứng với các cạnh a, b, c và abc r r r là bán kính đường tròn bàng tiếp ứng với các cạnh a, b, c. Gọi R và r lần lượt là bán kính đường tròn nội tiếp và đường tròn ngoại tiếp ta giác ABC. 3. Diện tích các tứ giác. + Diện tích hình chữ nhật: S a b với a, b là độ dài hai cạnh của hình chữ nhật. + Diện tích hình thang: ha b S 2 với a, b là độ dài hai đáy và h là chiều cao. + Diện tích hình bình hành: a S ah với a và a h là độ dài cạnh và đường cao tương ứng. + Diện tích tứ giác có hai đường chéo vuông góc: 1 2 1 S dd 2 với d d 1 2 là độ dài hai đường chéo. + Diện tích hình thoi: 1 2 1 S ah d d 2 với a và h là độ dài cạnh và đường cao, d1 và d2 là độ dài hai đường chéo. + Diện tích hình vuông: 2 2 1 Sa d 2 với a là độ dài cạnh và d là độ dài đường chéo của hình vuông. 4. Một số tính chất cơ bản về diện tích tam giác. + Nếu hai tam giác có cùng chiều cao thì tỉ số hai đáy tương ứng bằng tỉ số hai diện tích. Ngược lại, nếu hai tam giác có cùng đáy thì tỉ số hai chiều cao tương ứng bằng tỉ số hai diện tích. + Nếu hai tam giác có cùng chung đáy và có cùng diện tích thì đỉnh thứ ba thuộc đường thẳng song song với đáy. + Đường trung bình trong một tam giác chia tam giác đó thành hai phần có diện tích tỉ lệ với 1 : 3. + Đường trung tuyến của một tam giác chia tam giác đó thành hai phần có diện tích bằng nhau. + Ba tam giác có chung đỉnh là trọng tâm của một tam giác còn đáy là ba cạnh thì có diện tích bằng nhau. + Nếu một tam giác và một hình bình hành có cùng đáy và cùng chiều cao thì diện tích tam giác bằng nửa diện tích hình bình hành. + Với mọi tam giác ABC ta luôn có AB AC 2 SABC dấu bằng xẩy ra khi tam giác ABC vuông tại A. + Hai tam giác ABC và A’B’C’ có AA’ hoặc 0 AA’ 180 thì ABC A’B’C’ S AB.AC S A’B’A’C’. Các tính chất nêu trên của tam giác được chứng minh tương đối đơn giản và ta sẽ công nhận chúng khi giải các bài toán về diện tích. II. CÁC VÍ DỤ MINH HỌA III. BÀI TẬP TỰ LUYỆN IV. HƯỚNG DẪN GIẢI

Nguồn: toanmath.com

Đọc Sách

Chuyên đề bất đẳng thức ôn thi vào lớp 10
Tài liệu gồm 109 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. BẤT ĐẲNG THỨC CAUCHY (CÔ SI) Cho các số thực không âm abc khi đó ta có: 1. a b ab 2. Dấu đẳng thức xảy ra khi và chỉ khi a b. 2. 3 a b c abc 3. Dấu đẳng thức xảy ra khi và chỉ khi abc. Các bất đẳng thức 1 và 2 gọi là bất đẳng thức Cauchy cho 2 và 3 số thực không âm (còn gọi là bất đẳng thức Cô si hay bất đẳng thức AM – GM). Một số kỹ thuật vận dụng bất đẳng thức Cô-si: 1. Dự đoán dấu bằng để phân tích số hạng và vận dụng bất đẳng thức Cô si. 2. Kỹ thuật ghép đối xứng. 3. Kỹ thuật cô si ngược dấu. 4. Phương pháp đặt ẩn phụ. BẤT ĐẲNG THỨC SCHUR Cho xyz là các số thực không âm và số thực dương t. Khi đó ta có: xx yx z yy zy x zz yz x. Đây là bất đẳng thức có khá nhiều ứng dụng và tương đối chặt nhiều bài toán BĐT chỉ là hệ quả của BĐT này. BẤT ĐẲNG THỨC ABEL Cho hai dãy số thực: 1 2 n aa a và 123 n bbb b. Đặt 1 2 … k k S aa a với k n 1 2 3 và m SS S M SS S min max. Khi đó ta có: 1 11 2 2 1 A a b a b a b Mb n n. BẤT ĐẲNG THỨC BUNHIACOPXKI 1. Những kỹ năng vận dụng cơ bản. 2. Kỹ thuật tách ghép. 3. Kỹ thuật thêm bớt. 4. Phương pháp đặt ẩn phụ.
Chuyên đề hệ phương trình ôn thi vào lớp 10
Tài liệu gồm 108 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. HỆ ĐỐI XỨNG LOẠI 1 Một hệ phương trình ẩn x, y được gọi là hệ phương trình đối xứng loại 1 nếu mỗi phương trình ta đổi vai trò của x, y cho nhau thì phương trình đó không đổi. Tính chất: Nếu x y 0 0 là một nghiệm thì hệ y x 0 0 cũng là nghiệm. Cách giải: Đặt S xy P xy điều kiện 2 S P 4 quy hệ phương trình về 2 ẩn S P. HỆ ĐỐI XỨNG LOẠI 2 Một hệ phương trình 2 ẩn x y được gọi là đối xứng loại 2 nếu trong hệ phương trình ta đổi vai trò x y cho nhau thì phương trình trở thành phương trình kia. Tính chất: Nếu x y 0 0 là 1 nghiệm của hệ thì y x 0 0 cũng là nghiệm. Phương pháp giải: Trừ vế với vế hai phương trình của hệ ta được một phương trình có dạng 0 x y x y f xy f xy. HỆ CÓ YẾU TỐ ĐẲNG CẤP ĐẲNG CẤP Là những hệ chứa các phương trình đẳng cấp. Hoặc các phương trình của hệ khi nhân hoặc chia cho nhau thì tạo ra phương trình đẳng cấp. Một số hệ phương trình tính đẳng cấp được giấu trong các biểu thức chứa căn đòi hỏi người giải cần tinh ý để phát hiện. Phương pháp chung để giải hệ dạng này là: Từ các phương trình của hệ ta nhân hoặc chia cho nhau để tạo ra phương trình đẳng cấp bậc n. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Biến đổi tương đương là phương pháp giải hệ dựa trên những kỹ thuật cơ bản như: Thế / biến đổi các phương trình về dạng tích,cộng trừ các phương trình trong hệ để tạo ra phương trình hệ quả có dạng đặc biệt. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Đặt ẩn phụ là việc chọn các biểu thức f xy gxy trong hệ phương trình để đặt thành các ẩn phụ mới làm đơn giản cấu trúc của phương trình, hệ phương trình. Qua đó tạo thành các hệ phương trình mới đơn giản hơn, hay quy về các dạng hệ quen thuộc như đối xứng, đẳng cấp. Để tạo ra ẩn phụ người giải cần xử lý linh hoạt các phương trình trong hệ thông qua các kỹ thuật: Nhóm nhân tử chung, chia các phương trình theo những số hạng có sẵn, nhóm dựa vào các hằng đẳng thức, đối biến theo đặc thù phương trình. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x HOẶC y Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn x hoặc y ta có thể nghỉ đến các hướng xử lý như sau: Nếu ∆ chẵn, ta giải x theo y rồi thế vào phương trình còn lại của hệ để giải tiếp. Nếu ∆ không chẵn ta thường xử lý theo cách: Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có ∆ chẵn hoặc tạo thành các hằng đẳng thức. Dùng điều kiện ∆ ≥ 0 để tìm miền giá trị của biến x y. Sau đó đánh giá phương trình còn lại trên miền giá trị x y vừa tìm được. PHƯƠNG PHÁP ĐÁNH GIÁ Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ x y. Ngoài ra ta cũng có thể dùng hàm số để tìm GTLN – GTNN từ đó có hướng đánh giá, so sánh phù hợp.
Chuyên đề phương trình vô tỷ ôn thi vào lớp 10
Tài liệu gồm 100 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề phương trình vô tỷ, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG TRÌNH VÔ TỶ CƠ BẢN MỘT SỐ DẠNG PHƯƠNG TRÌNH VÔ TỶ THƯỜNG GẶP + Giải phương trình vô tỷ bằng phương pháp sử dụng biểu thức liên hợp. + Đặt ẩn phụ dựa vào tính đẳng cấp của phương trình. + Giải phương trình vô tỷ bằng phương pháp đặt ẩn phụ không hoàn toàn. + Sử dụng hằng đẳng thức để giải phương trình. + Phương pháp đánh giá. + Đặt ẩn phụ hoàn toàn để quy về phương trình một ẩn. + Đặt ẩn phụ hoàn để quy về hệ đối xứng loại 2. + Một số cách đặt ẩn phụ khác. MỘT SỐ BÀI TẬP RÈN LUYỆN LỜI GIẢI BÀI TẬP RÈN LUYỆN
Chuyên đề phương trình đại số ôn thi vào lớp 10
Tài liệu gồm 24 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề phương trình đại số, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. PHƯƠNG PHÁP Để giải một phương trình bậc lớn hơn 3. Ta thường biến đổi phương trình đó về một trong các dạng đặc biệt đó là: 1. Phương pháp đưa về dạng tích. Cách 1: Sử dụng các hằng đẳng thức. Cách 2: Nhẩm nghiệm rồi chia đa thức: Nếu x a là một nghiệm của phương trình f x 0 thì ta luôn có sự phân tích: f x x agx. Cách 3: Sử dụng phương pháp hệ số bất định. Ta thường áp dụng cho phương trình bậc bốn. 2. Phương pháp đặt ẩn phụ. Là phương pháp khá hữu hiệu đối với các bài toán đại số, trong giải phương trình bậc cao cũng vậy, người ta thường đặt ẩn phụ để chuyển phương trình bậc cao về phương trình bậc thấp hơn. Một số dạng sau đây ta thường dùng đặt ẩn phụ: + Dạng 1: Phương trình trùng phương. + Dạng 2: Phương trình đối xứng (hay phương trình hồi quy). + Dạng 3: Phương trình: xa xb xc xd e trong đó a + b = c + d. + Dạng 4: Phương trình 2 x a x b x c x d ex trong đó ab = cd. + Dạng 5: Phương trình 4 4 xa xb c. BÀI TẬP RÈN LUYỆN