Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán

Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Chuyên đề quan hệ giữa đường vuông góc và đường xiên lớp 7 môn Toán Tài liệu này bao gồm 20 trang, tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa đường vuông góc và đường xiên trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT: Trình bày về khái niệm đường vuông góc và đường xiên, cách nhận biết chúng và tính khoảng cách từ một điểm đến một đường thẳng. PHẦN II. CÁC DẠNG BÀI: Dạng 1: Nhận biết đường vuông góc, đường xiên và tính khoảng cách từ một điểm đến một đường thẳng. Dựa vào khái niệm đường vuông góc, đường xiên để nhận biết các loại đường đó. Tính khoảng cách từ một điểm đến đường thẳng chính là tính độ dài đường vuông góc kẻ từ điểm đó đến đường thẳng. Dạng 2: Đưa ra quan hệ giữa đường vuông góc và đường xiên, sử dụng định lý đường vuông góc ngắn hơn đường xiên. PHẦN III. BÀI TẬP TỰ LUYỆN: Bao gồm các bài tập để học sinh tự luyện tập và củng cố kiến thức về quan hệ giữa đường vuông góc và đường xiên. Tài liệu này sẽ giúp học sinh dễ dàng hiểu và áp dụng các kiến thức về đường vuông góc và đường xiên trong môn Toán lớp 7.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hai góc đối đỉnh
Tài liệu gồm 09 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề hai góc đối đỉnh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 1: Đường thẳng vuông góc, đường thẳng song song. Mục tiêu : Kiến thức: + Phát biểu được khái niệm hai góc đối đỉnh. + Nắm vững tính chất cơ bản của hai góc đối đỉnh. Kĩ năng: + Nhận biết được hai góc đối đỉnh. + Vận dụng được tính chất của hai góc đối đỉnh vào tính số đo góc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết hai góc đối đỉnh. Dạng 2: Tính số đo góc. Dạng 3: Chứng minh hai góc đối đỉnh.
Chuyên đề nghiệm của đa thức một biến
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề nghiệm của đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững định nghĩa nghiệm của đa thức một biến. + Nhận biết được số nghiệm của đa thức một biến không vượt quá số bậc của đa thức. Kĩ năng: + Kiểm tra được một số có là nghiệm của đa thức một biến hay không. + Tìm được nghiệm của một số đa thức một biến dạng đơn giản. + Biết cách chứng minh đa thức vô nghiệm. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Kiểm tra nghiệm của đa thức. Dạng 2: Tìm nghiệm của đa thức. + Bài toán 1. Tìm nghiệm của đa thức. + Bài toán 2. Chứng minh đa thức không có nghiệm. Dạng 3. Tìm đa thức một biến có nghiệm cho trước.
Chuyên đề cộng, trừ đa thức một biến
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề cộng, trừ đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Hiểu và nắm vững cách cộng, trừ đa thức theo hàng ngang và theo hàng dọc. Kĩ năng: + Thực hiện được cộng, trừ đa thức theo hàng ngang và theo hàng dọc. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Tính tổng hoặc hiệu của hai đa thức. Dạng 2: Tìm đa thức chưa biết trong một đẳng thức.
Chuyên đề đa thức một biến
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đa thức một biến, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Đại số chương 4: Biểu thức đại số. Mục tiêu : Kiến thức: + Nắm vững khái niệm đa thức một biến. + Nắm vững khái niệm về bậc, hệ số của đa thức một biến. Kĩ năng: + Sắp xếp được đa thức một biến. + Tìm được bậc, các hệ số, hệ số cao nhất, hệ số tự do của đa thức một biến. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Thu gọn và sắp xếp các hạng tử của đa thức. Dạng 2: Xác định bậc, hệ số của đa thức. Dạng 3. Tính giá trị của đa thức.