Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 2 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 2 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 1.1. Dấu của tam thức bậc hai. – Nhận biết: + Nhận biết được dấu của tam thức bậc hai trong trường hợp đặc biệt. + Tính được nghiệm và biệt thức của tam thức bậc hai. – Thông hiểu: + Hiểu được định về dấu của tam thức bậc hai. 1.2. Giải BPT bậc hai một ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc hai một ẩn. – Thông hiểu: + Giải được bất phương trình bậc hai một ẩn. + Hiểu được định lý về dấu của tam thức bậc hai trong bất phương trình bậc hai. 1.3. Phương trình quy về phương trình bậc hai. – Nhận biết: + Nhận biết nghiệm phương trình. – Thông hiểu: + Giải phương trình. 2 PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG 2.2. Đường thẳng trong mp tọa độ. – Nhận biết: + Nhận biết được phương trình tổng quát và phương trình tham số của đường thẳng trong mặt phẳng tọa độ; VT chỉ phương, VT pháp tuyến. + Biết công thức tính góc giữa 2 đường thẳng, công thức tính khoảng cách từ điểm đến đường thẳng. – Thông hiểu: + Viết phương trình tham số, phương trình tổng quát của đường thẳng trường hợp đơn giản. + Xác định được hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc với nhau bằng phương pháp tọa độ. + Tính được khoảng cách từ một điểm đến một đường thẳng bằng phương pháp tọa độ. – Vận dụng: + Viết phương trình tham số, phương trình tổng quát của đường thẳng thoả điều kiện cho trước. – Vận dụng cao: + Vận dụng được kiến thức về phương trình đường thẳng để giải một số bài toán có liên quan đến thực tiễn. 2.3. Đường tròn trong mp tọa độ. – Nhận biết: + Nhận dạng được phương trình đường tròn trong mặt phẳng tọa độ. – Thông hiểu: + Viết được phương trình đường tròn khi biết tọa độ tâm và bán kính; biết tọa độ ba điểm mà đường tròn đi qua; xác định được tâm và bán kính đường tròn khi biết phương trình của đường tròn. – Vận dụng: + Viết được phương trình tiếp tuyến của đường tròn khi biết tọa độ của tiếp điểm. – Vận dụng cao: + Vận dụng được kiến thức về phương trình đường tròn để giải một số bài toán liên quan đến thực tiễn (ví dụ: bài toán về chuyển động tròn trong Vật lí). 2.4. Ba đường Conic trong mp tọa độ. – Nhận biết: + Nhận biết được tiêu điểm các đường conic bằng hình học. + Nhận biết được phương trình chính tắc của các đường conic trong mặt phẳng tọa độ. – Thông hiểu: + Tìm các yếu tố của các đường conic. 3 ĐẠI SỐ TỔ HỢP 3.1. Quy tắc cộng và quy tắc nhân. – Nhận biết: + Nhận biết quy tắc cộng và quy tắc nhân. – Thông hiểu: + Vẽ và sử dụng được sơ đồ hình cây trong mô tả, trình bày, giải thích khi giải các bài toán đơn giản. – Vận dụng cao: + Vận dụng được quy tắc cộng và quy tắc nhân trong một số tình huống đơn giản (ví dụ: đếm số khả năng xuất hiện mặt sấp / ngửa khi tung một số đồng xu). + Vận dụng được sơ đồ hình cây trong các bài toán đếm đơn giản các đối tượng trong Toán học, trong các môn học khác cũng như trong thực tiễn (ví dụ: đếm số hợp tử tạo thành trong Sinh học, hoặc đếm số trận đấu trong một giải thể thao). 3.2. Hoán vị, chỉnh hợp và tổ hợp. – Nhận biết: + Nhận biết các khái niệm hoán vị, chỉnh hợp và tổ hợp. + Nhận biết được các hoán vị, chỉnh hợp, tổ hợp trong những tình huống thực tế đơn giản. – Thông hiểu: + Tính được số các hoán vị, chỉnh hợp, tổ hợp. – Vận dụng: + Vận dụng được khái niệm hoán vị, chỉnh hợp, tổ hợp để giải những bài toán đếm trong tình huống thực tế. + Vận dụng được khái niệm hoán vị, chỉnh hợp, tổ hợp để giải những bài toán tìm số. 3.3. Nhị thức Newton. – Nhận biết: + Nhận biết được số hạng, số hạng của công thức khai triển nhị thức Newton. – Thông hiểu: + Sử dụng các công thức này khai triển các nhị thức Newton với số mũ thấp. 4 XÁC SUẤT 4.1. Không gian mẫu và biến cố. – Nhận biết: + Biết khái niệm không gian mẫu, biến cố. – Thông hiểu: + Mô tả được không gian mẫu, biến cố trong một số thí nghiệm đơn giản. 4.2. Xác suất của biến cố. – Nhận biết: + Biết tính xác suất của biến cố đơn giản. + Nhận biết được biến cố đối và tính được xác suất của biến cố đối. – Thông hiểu: + Mô tả được tính chất cơ bản của xác suất và tính xác suất của biến cố. – Vận dụng: + Tính được xác suất trong một số thí nghiệm lặp bằng cách sử dụng sơ đồ hình cây. + Tính được xác suất của biến cố trong bài toán thực tế.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 2 Toán 10 năm 2019 - 2020 trường THPT Lạc Long Quân - Bến Tre
Đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Lạc Long Quân – Bến Tre mã đề 02 gồm có 02 trang, đề có dạng trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 16 câu, chiếm 04 điểm, phần tự luận gồm 05 câu, chiếm 06 điểm, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Lạc Long Quân – Bến Tre : + Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;3) và B(-4;5) và đường thẳng d: 4x – 3y + 5  = 0. a) Viết phương trình tổng quát của đường thẳng AB. b) Viết phương trình đường tròn đường kính AB. c) Tìm tọa độ của điểm M thuộc đường thẳng d sao cho độ dài của đoạn AM nhỏ nhất. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm A(-1;4) và đường thẳng d có phương trình 3x + 4y – 5 = 0, khoảng cách từ điểm A đến đường thẳng d bằng? + Trong mặt phẳng tọa độ Oxy, cho đường tròn có phương trình: x^2 + y^2 – 4x + 2y + 3 = 0, bán kính của đường tròn bằng?
Đề thi học kỳ 2 Toán 10 năm 2019 - 2020 trường THPT Quốc Thái - An Giang
Đề thi học kỳ 2 Toán 10 năm học 2019 – 2020 trường THPT Quốc Thái – An Giang mã đề 001 gồm có 03 trang, đề thi gồm 02 phần: phần trắc nghiệm gồm 24 câu, chiếm 6,0 điểm, phần tự luận gồm có 03 câu, chiếm 4,0 điểm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Quốc Thái – An Giang : + Trong mặt phẳng Oxy cho tam giác ABC biết A (3; −1), B (2; 2), C (−2; −1). 1) Viết phương trình tổng quát đường cao AH. 2) Viết phương trình đường tròn tâm A và tiếp xúc với đường thẳng BC. [ads] + Gọi S là tập nghiệm của bất phương trình x2 − 8x + 7 ≥ 0 . Trong các tập hợp sau, tập nào không là tập con của S? + Cho hai điểm A (1; −4) và B (3; 2). Viết phương trình tổng quát của đường thẳng trung trực của đoạn thẳng AB.
Đề thi học kỳ 2 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Du - Lâm Đồng
Đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Du – Lâm Đồng mã đề 123 gồm 03 trang với 30 câu trắc nghiệm và 05 câu tự luận, thời gian làm bài thi là 90 phút, đề thi có đáp án phần trắc nghiệm và lời giải chi tiết phần tự luận. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Du – Lâm Đồng : + Trong mặt phẳng Oxy cho hai điểm A(1;4) và B(3;-2). a) Viết phương trình tổng quát của cạnh AB. b) Viết phương trình đường tròn đường kính AB. + Cho x thuộc góc phần tư thứ hai của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây. + Viết phương trình chính tắc của elip (E) có tiêu cự bằng 4 và điểm M(2;3) thuộc (E) .
Đề thi học kỳ 2 Toán 10 năm 2019 - 2020 trường THPT Lương Văn Cù - An Giang
Nhằm tổng kết chất lượng học tập môn Toán của học sinh khối lớp 10, vừa qua, trường THPT Lương Văn Cù, huyện Chợ Mới, tỉnh An Giang tổ chức kỳ thi học kỳ 2 Toán 10 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Lương Văn Cù – An Giang mã đề 456 gồm 02 trang với 14 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi học kỳ 2 Toán 10 năm 2019 – 2020 trường THPT Lương Văn Cù – An Giang : + Hai chiếc tàu thủy của hãng Vinasin rời cảng Cam Ranh ở cùng một thời điểm. Tàu VS1 chạy theo hướng Đông Bắc với vận tốc trung bình 35 hải lý/giờ, tàu VS2 chạy theo hướng Đông với vận tốc trung bình 30 hải lý/giờ. Hỏi sau 2 giờ, hai tàu cách nhau khoảng bao nhiêu hải lý? [ads] + Trong mặt phẳng Oxy, tìm phương trình của đường elip có độ dài trục lớn bằng 6 và độ dài trục nhỏ bằng 4. + Trong mặt phẳng Oxy, cho hai điểm A(1;2); B(4;6). Viết phương trình đường tròn (C) có tâm A và đi qua điểm B.