Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Nam

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Nam Bản PDF Đề kiểm tra học kỳ 2 Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Quảng Nam mã đề 101 được biên soạn nhằm đánh giá chất lượng dạy và học môn Toán của giáo viên và học sinh tại các trường THPT, trung tâm GDTX trên địa bàn tỉnh Quảng Nam, đề gồm 3 trang với 32 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 60 phút, không kể thời gian phát đề, kỳ thi diễn ra vào ngày 05/05/2018, đề thi có đáp án . Trích dẫn đề thi HK2 Toán lớp 12 sở Quảng Nam 2017 – 2018 : + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N theo thứ tự là hai điểm thay đổi trên hai cạnh AB, AD sao cho AM = DN (M không trùng với A, B). Biết rằng tồn tại một mặt cầu cố định có tâm thuộc đường thẳng AC’ và tiếp xúc với mặt phẳng (A’MN) khi M, N thay đổi. Tính bán kính R của mặt cầu đó. [ads] + Cho số phức z có môđun bằng 8. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = 2z + 4 – 3i là đường tròn có tâm I (a;b), bán kính R. Tổng a + b + R bằng? + Cho hình phẳng (H) giới hạn bởi parabol (P): y = x^2, trục hoành và tiếp tuyến của (P) tại điểm M (2;4). Tính thể tích V của khối tròn xoay tạo thành khi quay hình (H) xung quanh trục hoành.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình (H) giới hạn tạo bởi đồ thị hàm số y x x 3, trục hoành và hai đường x 1 và x 2. Quay hình (H) quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành. + Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua điểm A(1;2;3) và có vectơ chỉ phương u. + Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;2;3) và bán kính bằng độ dài đoạn thẳng AB với A(1;-1;2) và B(2;1;4).
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Võ Văn Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Diên Hồng - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THCS – THPT Diên Hồng, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THCS – THPT Diên Hồng – TP HCM : + Tính thể tích của vật thể nằm giữa hai mặt phẳng x 0 và x 1, biết thiết diện của vật thể cắt bởi mặt phẳng P vuông góc với trục Ox tại điểm có hoành độ x x 0 1 là một hình chữ nhật có độ dài hai cạnh là x và 2 ln 1. + Học sinh trình bày lời giải bằng phương pháp tự luận đối với các câu sau đây: Câu 1, Câu 4, Câu 6, Câu 26. + Một chất điểm chuyển động với vận tốc thay đổi theo thời gian 2 v t t t 2 4 m s. Quãng đường chất điểm đó đi được từ thời điểm 1 t s 1 đến 2 t s 2.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.