Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Nam

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Quảng Nam Bản PDF Đề kiểm tra học kỳ 2 Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Quảng Nam mã đề 101 được biên soạn nhằm đánh giá chất lượng dạy và học môn Toán của giáo viên và học sinh tại các trường THPT, trung tâm GDTX trên địa bàn tỉnh Quảng Nam, đề gồm 3 trang với 32 câu hỏi trắc nghiệm khách quan, thí sinh làm bài trong thời gian 60 phút, không kể thời gian phát đề, kỳ thi diễn ra vào ngày 05/05/2018, đề thi có đáp án . Trích dẫn đề thi HK2 Toán lớp 12 sở Quảng Nam 2017 – 2018 : + Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 1. Gọi M, N theo thứ tự là hai điểm thay đổi trên hai cạnh AB, AD sao cho AM = DN (M không trùng với A, B). Biết rằng tồn tại một mặt cầu cố định có tâm thuộc đường thẳng AC’ và tiếp xúc với mặt phẳng (A’MN) khi M, N thay đổi. Tính bán kính R của mặt cầu đó. [ads] + Cho số phức z có môđun bằng 8. Biết rằng tập hợp điểm trong mặt phẳng tọa độ biểu diễn các số phức w = 2z + 4 – 3i là đường tròn có tâm I (a;b), bán kính R. Tổng a + b + R bằng? + Cho hình phẳng (H) giới hạn bởi parabol (P): y = x^2, trục hoành và tiếp tuyến của (P) tại điểm M (2;4). Tính thể tích V của khối tròn xoay tạo thành khi quay hình (H) xung quanh trục hoành.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Kon Tum
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm học 2019 2020 sở GD ĐT Kon Tum Bản PDF Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Kon Tum tổ chức kỳ thi kiểm tra khảo sát chất lượng môn Toán đối với học sinh lớp 12 trong giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum mã đề 121 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 sở GD&ĐT Kon Tum : + Trong không gian Oxyz, cho các điểm A(1;0;0), B(0;b;0), C(0;0;c), trong đó b và c là các số hữu tỉ dương và mặt phẳng (P) có phương trình y – z + 1 = 0. Biết rằng mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng 1/3. Giá trị b + c bằng? + Trong không gian Oxyz, cho ba điểm A(1;1;1), B(−1;2;1), C(3;6;-5). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) thỏa MA^2 + MB^2 + MC^2 đạt giá trị nhỏ nhất (với a, b, c là các số nguyên). Khi đó a + b + c bằng? [ads] + Cho các số phức z1 = -2 + i và z2 = 2 + i và số phức z thay đổi thỏa mãn |z – z1|^2 + |z – z2|^2. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z. Giá trị biểu thức M^2 – m^2 bằng? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trung Giã Hà Nội
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Trung Giã Hà Nội Bản PDF Ngày … tháng 06 năm 2020, trường THPT Trung Giã, huyện Sóc Sơn, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội mã đề 121 và mã đề 122 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126. Trích dẫn đề thi học kì 2 Toán lớp 12 năm 2019 – 2020 trường THPT Trung Giã – Hà Nội : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;6;2) và B(2;-2;0) và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi H là hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó. [ads] + Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;4;4), B(1;0;6), C(0;-1;2) và D(1;1;1). Gọi ∆ là đường thẳng đi qua D sao cho tổng các khoảng cách từ A, B, C đến ∆ là lớn nhất. Đường thẳng ∆ đi qua điểm nào dưới đây? + Đường thẳng y = kx + 4 cắt parabol y = (x – 2)^2 tại hai điểm phân biệt và diện tích các hình phẳng S1, S2 bằng nhau như hình vẽ sau. Mệnh đề nào dưới đây đúng? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Hậu Giang
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Hậu Giang Bản PDF Tháng 06 năm 2020, sở Giáo dục và Đào tạo tỉnh Hậu Giang tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi học kỳ 2 Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang mã đề 701 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn đề thi học kỳ 2 Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Hậu Giang : + Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính tốc độ truyền bệnh (người/ngày) tại thời điểm t là f'(t) = 90t – 3t^2. Nếu xem f(t) là số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ t thì khi dịch đạt đỉnh điểm (tốc độ truyền bệnh lớn nhất) sẽ có khoảng bao nhiêu người nhiễm bệnh? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 3)^2 + (y + 2)^2 + (z – 1)^2 = 100 và mặt phẳng (P): 2x – 2y – z + 9 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C). Giả sử (C) có tâm H(a;b;c) và bán kính r. Có bao nhiêu số dương trong các số a, b, c và r? [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) cắt các tia Ox, Oy, Oz lần lượt tại A, B và C sao cho H(1;2;3) là trực tâm của tam giác ABC. Tính khoảng cách h từ điểm O đến mặt phẳng (P). File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Phan Bội Châu Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 2020 trường THPT Phan Bội Châu Đắk Lắk Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 mã đề 121 và mã đề 122 đề thi HK2 Toán lớp 12 năm học 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk; đề gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124, 125, 126, 127, 128. Trích dẫn đề thi HK2 Toán lớp 12 năm 2019 – 2020 trường THPT Phan Bội Châu – Đắk Lắk : + Tập hợp điểm biểu diễn của số phức z thỏa mãn |z – 1 + 3i| = |z¯ + 2 – i| là: A. Đường thẳng có phương trình 6x – 4y – 5 = 0. B. Đường thẳng có phương trình 3x + 2y – 5 = 0. C. Đường thẳng có phương trình 6x + 4y – 5 = 0. D. Đường thẳng có phương trình 3x – 2y – 5 = 0. + Mặt cầu (S): x2 + y2 + z2 – 4x + 3y – 2z = 0 cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác điểm O). Phương trình tham số đường thẳng d là giao tuyến mặt phẳng (ABC) và mặt phẳng (P): x – y + z – 1 = 0 là? [ads] + Trong không gian Oxyz, cho vật thế nằm giữa hai mặt phẳng x = 0 và x = 3. Biết rằng thiết diện của vật thế cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (0 ≤ x ≤ 3) là một hình vuông cạnh là √(9 – x^2). Tính thể tích V của vật thể. File WORD (dành cho quý thầy, cô):