Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 11 năm 2018 - 2019 trường THPT chuyên Lê Hồng Phong - TP. HCM

Đề thi HK1 Toán 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 90 phút, đề thi dành cho các lớp 11CV, 11CA, 11CTrN, 11D, 11SN, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 11 năm 2018 – 2019 trường THPT chuyên Lê Hồng Phong – TP. HCM : + Tại trạm xe buýt có 5 hành khách đang chờ xe đón, không ai quen nhau trong đó có anh A và chị B. Khi đó có 1 chiếc xe ghé trạm để đón khách, biết rằng lúc đó trên xe chỉ còn đúng 5 ghế trống mỗi ghế trống chỉ 1 người ngồi gồm có 1 dãy ghế trống 3 chỗ và 2 chỗ ghế đơn để chở 5 người tham khảo hình vẽ bên các ghế trống được ghi là 1, 2, 3, 4, 5 và 5 hành khách lên ngồi ngẫu nhiên vào 5 chỗ còn trống. Tính xác suất để anh A và chị B ngồi cạnh nhau? + Một quả bóng «siêu nẩy» rơi từ độ cao 30 mét so với mặt đất khi chạm đất nó nẩy lên cao với độ cao bằng 2/3 so với độ cao lần tước đó. Hỏi ở lần nẩy lên thứ 11 quả bóng đạt độ cao tối đa bao nhiêu mét so với mặt đất (lấy kết quả gần đúng 2 số sau dấu phẩy)? + Cho một đa giác đều 30 đỉnh. Có bao nhiêu tam giác cân có 3 đỉnh là 3 đỉnh của đa giác ban đầu?

Nguồn: toanmath.com

Đọc Sách

Đề thi HK1 Toán 11 năm học 2017 - 2018 sở GD và ĐT Nam Định
Đề thi HK1 Toán 11 năm học 2017 – 2018 sở GD và ĐT Nam Định gồm 1 trang với 2 phần: + Phần I. Trắc nghiệm: gồm 8 câu hỏi, mỗi câu 0.25 điểm + Phần II. Tự luận, gồm 5 câu, chiếm 8 điểm Đề thi có đáp án và lời giải chi tiết.
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Kim Liên - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Kim Liên – Hà Nội gồm 4 trang với 2 phần: + Phần trắc nghiệm: gồm 25 câu hỏi, thời gian làm bài 45 phút, đòi hỏi học sinh làm bài nhanh và chính xác. + Phần tự luận: gồm 4 bài toán tự luận, thời gian làm bài 45 phút, kiểm tra khả năng trình bày lời giải của học sinh. Đề thi có đáp án . Trích dẫn đề thi : + Cho hình bình hành ABCD, biết A và B cố định, điểm C di động trên đường thẳng Δ cố định. Khẳng định nào sau đây là đúng? A. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng trục AB B. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ BA C. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép đối xứng tâm I (I là trung điểm của AB) D. Điểm D di động trên đường thẳng Δ’ là ảnh của Δ qua phép tịnh tiến theo vectơ AB [ads] + Cho hàm số y = tanx. Khẳng định nào sau đây là sai? A. Hàm số là hàm số chẵn B. Hàm số tuần hoàn với chu kỳ π C. Hàm số đồng biến trên mỗi khoảng (-π/2 + kπ; π/2 + kπ) k ∈ Z D. Tập xác định của hàm số là R\(π/2 + kπ) k ∈ Z + Trên giá sách có 6 quyển sách tiếng Việt khác nhau, 4 quyển sách tiếng Anh khác nhau, 7 quyển sách tiếng Pháp khác nhau. Hỏi có bao nhiêu cách lấy từ giá trên 3 quyển sách sao cho có đủ cả sách tiếng Việt, tiếng Anh và tiếng Pháp? A. 59   B. 17 C. 680   D. 168 Bạn đọc có thể theo dõi các đề thi HK1 Toán 11 tại đây (cập nhật thường xuyên).
Đề thi HK1 Toán 11 năm học 2017 - 2018 trường THPT Lý Thánh Tông - Hà Nội
Đề thi HK1 Toán 11 năm học 2017 – 2018 trường THPT Lý Thánh Tông – Hà Nội gồm 4 câu hỏi trắc nghiệm và 25 câu hỏi tự luận, thời gian làm bài 90 phút, đề thi HK1 Toán 11 có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho tứ diện MNPQ. Gọi A, B là hai điểm phân biệt cùng thuộc đường thẳng MN; C, D là hai điểm phân biệt cùng thuộc đường thẳng PQ. Khi đó AC và BD có vị trí tương đối là: A. AC và BD chéo nhau B. AC ≡ BD C. AC cắt BD D. AC // BD [ads] + Hình chóp tứ giác S.ABCD, đáy ABCD là hình chữ nhật. Gọi M,N,P lần lượt là các điểm trên BC, DC và SC sao cho SC = 4SP, CM = 3MB, CN = 3ND. 1. Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD) 2. Chứng minh SD song song với mặt phẳng (MNP) + Có 2 chiếc hộp, mỗi hộp chứa 5 chiếc thẻ đều được đánh số từ 1 đến 5. Từ mỗi hộp rút ngẫu nhiên ra 1 chiếc thẻ. Tính xác suất để rút được 2 thẻ có tổng số ghi trên 2 tấm thẻ bằng 7?
Đề thi HK1 Toán 11 năm học 2016 - 2017 trường THPT Yên Khánh B - Ninh Bình
Đề thi HK1 Toán 11 năm học 2016 – 2017 trường THPT Yên Khánh B – Ninh Bình gồm 25 câu hỏi trắc nghiệm và 4 câu hỏi tự luận. Trích một số câu trong đề thi: 1. Khẳng định nào sau đây là khẳng định đúng? A. Hai đường thẳng phân biệt không song song thì chéo nhau B. Hai đường thẳng không có điểm chung thì chéo nhau C. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau D. Hai đường thẳng chéo nhau thì không có điểm chung 2. Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Gọi M N, lần lượt là trung điểm SD, BC. a) Tìm giao tuyến của (SAC) và (SBD) b) Chứng minh rằng MN // (SAB) 3. Đội thanh niên xung kích của trường THPT Yên Khánh B có 12 học sinh gồm 5 học sinh lớp 12, 4 học sinh lớp 11 và 3 học sinh lớp 10. Chọn ngẫu nhiên 4 học sinh đi làm nhiệm vụ. Tính xác suất để 4 học sinh được chọn thuộc không quá 2 trong 3 lớp trên.