Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp bài tập trắc nghiệm thể tích, mặt cầu, mặt nón, mặt trụ - Nhóm Toán

Tài liệu gồm 27 trang với 75 bài toán trắc nghiệm thuộc chuyên đề thể tích khối đa diện và mặt cầu – mặt nón – mặt trụ có lời giải chi tiết. Các bài toán được chia thành 4 dạng, trong mỗi dạng bài tập được sắp xếp theo các mức độ nhận thức: nhận biết, thông hiểu, vận dụng thấp và vận dạng cao. + Dạng 1. Khái niệm khối đa diện + Dạng 2. Khối đa diện lồi và khối đa diện đều + Dạng 3. Thể tích khối đa diện + Dạng 4. Mặt nón, mặt trụ và mặt cầu Trích dẫn tài liệu : + Trong các mệnh đề sau đây, mệnh đề nào sai? A. Mặt trụ và mặt nón có chứa các đường thẳng B. Mọi hình chóp luôn nội tiếp trong mặt cầu C. Có vô số mặt phẳng cắt mặt cầu theo những đường tròn bằng nhau D. Luôn có hai đường tròn có bán kính khác nhau cùng nằm trên một mặt nón [ads] + Một công ty muốn thiết kế bao bì để đựng sữa với thể tích 1dm3. Bao bì được thiết kế bởi một trong hai mô hình sau: hình hộp chữ nhật có đáy là hình vuông hoặc dạng hình trụ và được sản xuất cùng một nguyên vật liệu. Hỏi thiết kế theo mô hình nào sẽ tiết kiệm được nguyên vật liệu nhất? Và thiết kế mô hình đó theo kích thước như thế nào? A. Hình trụ và chiều cao bằng bán kính đáy B. Hình trụ và chiều cao bằng đường kính đáy C. Hình hộp chữ nhật và cạnh bên gấp hai lần cạnh đáy D. Hình hộp chữ nhật và cạnh bên bằng cạnh đáy + Khẳng định nào dưới đây là khẳng định SAI? A. Quay đường tròn xung quanh một dây cung của nó luôn tạo ra một hình cầu B. Quay một tam giác nhọn xung quanh cạnh của nó không thể tạo ra hình nón C. Quay hình vuông xung quanh cạnh của nó luôn sinh ra hình trụ có r, h, l bằng nhau D. Quay tam giác đều quanh đường cao của nó luôn tạo ra một hình nón

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn bài tập trắc nghiệm nguyên hàm, tích phân và ứng dụng - Đặng Việt Đông
Tài liệu gồm 75 trang tuyển chọn các bài toán trắc nghiệm nguyên hàm, tích phân và ứng dụng với nhiều dạng bài và mức độ nhận thức. Nguyên hàm A – Lý thuyết tóm tắt 1. Khái niệm nguyên hàm 2. Tính chất 3. Nguyên hàm của một số hàm số thường gặp B – Bài tập (157 câu) Phương pháp đổi biến và vi phân A – Lý thuyết tóm tắt và phương pháp B – Bài tập (76 câu) Phương pháp từng phần A – Lý thuyết tóm tắt phương pháp lấy nguyên hàm từng phần B – Bài tập (23 câu) [ads] Tích phân A – Lý thuyết tóm tắt 1. Khái niệm tích phân 2. Tính chất của tích phân 3. Phương pháp tính tích phân + Phương pháp đổi biến số + Phương pháp tích phân từng phần B – Bài tập (80 câu) C – Tích phân tổng hợp (124 câu) Ứng dụng tính diện tích A – Lý thuyết tóm tắt B – Bài tập (127 câu) Ứng dụng tính thể tích A – Lý thuyết tóm tắt B – Bài tập (52 câu)
Bài tập trắc nghiệm nguyên hàm - tích phân và ứng dụng - Nguyễn Văn Rin
Tài liệu gồm 200 bài toán trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng trích trong các đề thi thử của các trường THPT với nhiều bài toán thuộc độ vận dụng, vận dung cao.
Tổng hợp bài tập nguyên hàm, tích phân và ứng dụng - Nhóm Toán
Tài liệu gồm 251 trang được chia thành 20 phần, bao gồm lý thuyết, ví dụ mẫu có hướng dẫn giải và bài tập tự luận, trắc nghiệm có đáp án về chuyên đề nguyên hàm, tích phân và ứng dụng. Đây là sản phẩm tổng hợp từ các giáo viên tham gia Nhóm Toán. Các bài toán có đáp án, hướng dẫn giải các bài toán vận dụng cao, các phương án gây nhiễu được phân tích giúp học sinh nhận biết và hạn chế lỗi sai. [ads]
Hướng dẫn giải và bài tập ứng dụng của tích phân - Phạm Văn Huy
Tài liệu do tác giả Phạm Văn Huy biên soạn gồm 39 trang hướng dẫn giải các dạng toán ứng dụng của tích phân để tính diện tích và thể tích. Nội dung tài liệu: A. LÝ THUYẾT I. DIỆN TÍCH HÌNH PHẲNG II. THỂ TÍCH KHỐI TRÒN XOAY 1. Tính thể tích của vật thể 2. Tính thể tích vật tròn xoay [ads] B. PHƯƠNG PHÁP GIẢI TOÁN I. DIỆN TÍCH HÌNH PHẲNG Dạng 1: Tính diện tích hình phẳng giới hạn bởi các đường y=f(x), x=a, x=b và trục hoành Dạng 2: Diện tích hình phẳng giới hạn bởi các đường y=f(x), y=g(x), x=a, x=b Dạng 3: Diện tích hình phẳng giới hạn bởi các đường y=f(x), y=g(x) II. THỂ TÍCH KHỐI TRÒN XOAY C. 211 BÀI TẬP TRẮC NGHIỆM CÓ ĐÁP ÁN