Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2019 - 2020 sở GDĐT Yên Bái

Ngày … tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Yên Bái tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp tỉnh môn Toán 12 năm học 2019 – 2020. Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2019 – 2020 sở GD&ĐT Yên Bái gồm 07 bài toán dạng tự luận, đề thi có 01 trang, có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2019 – 2020 sở GD&ĐT Yên Bái : + Cho hình chóp S.ABC có đáy là tam giác ABC vuông tại B, AB = a√3, ACB = 60 độ, hình chiếu vuông góc của S lên mặt phẳng (ABC) là trọng tâm của tam giác ABC, gọi E là trung điểm cạnh AC, biết góc giữa SE và mặt phẳng đáy bằng 30 độ. a) Tính theo a thể tích khối chóp S.ABC và khoảng cách từ C đến mặt phẳng (SAB). b) Tính góc giữa hai mặt phẳng (SAC) và (ABC). [ads] + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). BF giao CE = I, K = BF giao DE, L = CE giao DF, hai điểm M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng: a) Đường thẳng KL song song với đường thẳng BC. b) M, N, O thẳng hàng. + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên lấy ra được chỉ có mặt ba chữ số khác nhau. + Cho hàm số y = (mx + 9)/(x + m). Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-∞;1). + Tìm tất cả các số nguyên dương n sao cho n^4 + n^3 + 1 là số chính phương.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.
Đề thi chọn học sinh giỏi Toán THPT năm 2023 - 2024 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề thi chọn học sinh giỏi Toán THPT năm 2023 – 2024 sở GD&ĐT Sơn La : + Một hộp đựng 5 quả cầu trắng, 7 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3 cm. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối nón có đường tròn đáy nội tiếp tam giác SAB và đỉnh nằm trên cạnh SC bằng? + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có AB BC 2. Gọi M N lần lượt là trung điểm của AB CD. Đường thẳng BN cắt đường thẳng AC tại điểm E (5;3). Phương trình đường thẳng CM là x y 9. Tìm tọa độ điểm C.