Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán

giới thiệu đến quý thầy, cô giáo cùng các em học sinh tài liệu chuyên đề phương pháp tọa độ trong không gian Oxyz (Hình học 12 chương 3) nhằm bổ trợ cho các em học sinh khối 12 trong quá trình ôn thi THPT Quốc gia môn Toán. Tài liệu gồm 182 trang được biên soạn bởi thầy Lê Văn Đoàn phân dạng và tuyển chọn các bài toán thuộc các chủ đề: hệ trục tọa độ trong không gian, phương trình mặt phẳng, phương trình đường thẳng. Mục lục tài liệu chuyên đề phương pháp tọa độ trong không gian ôn thi THPTQG môn Toán: BÀI 1 . HỆ TRỤC TỌA ĐỘ TRONG KHÔNG GIAN. + Dạng toán 1. Bài toán liên quan đến véctơ và độ dài đoạn thẳng (Trang 3). + Dạng toán 2. Bài toán liên quan đến trung điểm và trọng tâm (Trang 4). + Dạng toán 3. Bài toán liên quan đến hai véctơ bằng nhau (Trang 5). + Dạng toán 4. Hai véctơ cùng phương và ba điểm thẳng hàng (Trang 8). + Dạng toán 5. Nhóm bài toán liên quan đến hình chiếu và điểm đối xứng (Trang 9). + Dạng toán 6. Bài toán liên quan đến tích vô hướng (Trang 17). + Dạng toán 7. Bài toán liên quan đến tích có hướng (Trang 19). + Dạng toán 8. Xác định các yếu tố cơ bản của mặt cầu (Trang 23). + Dạng toán 8. Viết phương trình mặt cầu dạng cơ bản (Trang 25). [ads] BÀI 2 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của mặt phẳng (Trang 44). + Dạng toán 2. Khoảng cách, góc và vị trí tương đối (Trang 45). + Dạng toán 2. Viết phương trình mặt phẳng (Trang 55). BÀI 3 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Xác định các yếu tố cơ bản của đường thẳng (Trang 81). + Dạng toán 2. Góc (Trang 83). + Dạng toán 3. Khoảng cách (Trang 86). + Dạng toán 4. Vị trí tương đối (Trang 88). + Dạng toán 5. Viết phương trình đường thẳng (Trang 105). + Dạng toán 6. Hình chiếu, điểm đối xứng và bài toán liên quan (Trang 139). + Dạng toán 7. Bài toán cực trị và một số bài toán khác (Trang 155).

Nguồn: toanmath.com

Đọc Sách

Hình học giải tích không gian - Đặng Thành Nam
Tài liệu gồm 42 trang gồm lý thuyết, hướng dẫn giải và bài tập tự luận chủ đề hình học giải tích không gian. + Kiến thức cần nhớ: Lý thuyết cơ bản và các công thức tính + Ví dụ mẫu: Có lời giải chi tiết + Bài tập tự rèn luyện: Có đáp số [ads] Trích dẫn tài liệu : + Trong không gian với hệ trục tọa độ Oxyz cho hai mặt phẳng (P1), (P2) có các phương trình tương ứng là 2x – y + 2z – 1 = 0 và 2x – y + 2z + 5 = 0 và điểm A (-1; 1; 1) nằm trong khoảng giữa hai mặt phẳng đó. Gọi (S) là mặt cầu bất kỳ qua A và tiếp xúc với cả hai mặt phẳng (P1) và (P2). Gọi I là tâm của mặt cầu (S). Chứng tỏ rằng I thuộc một đường tròn cố định. Xác định tọa độ tâm và tính bán kính của đường tròn đó. + Cho hình lập phương ABCD.A’B’C’D’ cạnh bằng a. Gọi M, N lần lượt là trung điểm của BC và DD’. (i). Chứng minh rằng MN // (A’BD) (ii). Tính khoảng cách giữa BD và MN theo a + Viết phương trình mặt phẳng (Q) đi qua A(2, 4, 3) và song song với mặt phẳng (P): 2x – 3y + 6z + 19 = 0. Tính khoảng cách giữa hai mặt phẳng (P) và (Q). Hạ AH ⊥ (P). Xác định tọa độ điểm H.
Chuyên đề hình học giải tích không gian - Lưu Huy Thưởng
Tài liệu gồm 60 trang với phần lý thuyết, công thức, bài tập có đáp án và tuyển tập các bài hình học tọa độ không gian trong đề thi THPT, Đại học – Cao đẳng. Tài liệu do thầy Lưu Huy Thưởng biên soạn. BÀI 1: MỞ ĐẦU BÀI 2: PHƯƠNG TRÌNH MẶT CẦU BÀI 3: PHƯƠNG TRÌNH MẶT PHẲNG Vấn đề 1: Viết phương trình mặt phẳng Để lập phương trình mặt phẳng (α) ta cần xác định một điểm thuộc (α) và một VTPT của nó Vấn đề 2: Vị trí tương đối của hai mặt phẳng Vấn đề 3: Khoảng cách từ một điểm đến một mặt phẳng Khoảng cách giữa hai mặt phẳng song song.Hình chiếu của một điểm trên mặt phẳng. Điểm đối xứng của một điểm qua mặt phẳng Vấn đề 4: Góc giữa hai mặt phẳng BÀI 4: PHƯƠNG TRÌNH ĐƯỜNG THẲNG Vấn đề 1: Lập phương trình đường thẳng Để lập phương trình đường thẳng d ta cần xác định một điểm thuộc d và một VTCP của nó Vấn đề 2: Vị trí tương đối giữa hai đường thẳng Để xét VTTĐ giữa hai đường thẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa các VTCP và các điểm thuộc các đường thẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình các đường thẳng Vấn đề 3: Vị trí tương đối giữa đường thẳng và mặt phẳng Để xét VTTĐ giữa đường thẳng và mặt phẳng, ta có thể sử dụng một trong các phương pháp sau: + Phương pháp hình học: Dựa vào mối quan hệ giữa VTCP của đường thẳng và VTPT của mặt phẳng + Phương pháp đại số: Dựa vào số nghiệm của hệ phương trình đường thẳng và mặt phẳng Vấn đề 5: Khoảng cách Vấn đề 6: Góc Vấn đề 7: Một số vấn đề khác [ads] CÁC DẠNG TOÁN PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN I. VIẾT PHƯƠNG TRÌNH MẶT PHẲNG + Dạng 1: Cơ bản + Dạng 2: Phương trình mặt phẳng liên quan tới mặt cầu + Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách + Dạng 4: Viết phương trình mặt phẳng liên quan đến góc + Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác II. VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG + Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương + Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác + Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác + Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách + Dạng 5: Viết phương trình đường thẳng liên quan đến góc + Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác III. VIẾT PHƯƠNG TRÌNH MẶT CẦU IV. TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC + Dạng 1: Xác định điểm thuộc mặt phẳng + Dạng 2: Xác định điểm thuộc đường thẳng + Dạng 3: Xác định điểm thuộc mặt cầu + Dạng 4: Xác định điểm trong không gian + Dạng 5: Xác định điểm trong đa giác CÁC BÀI TOÁN LIÊN QUAN ĐẾN MIN – MAX
Chuyên đề HH giải tích không gian - Trung tâm LTĐH Vĩnh Viễn
Tài liệu gồm 51 trang, tóm tắt công thức, phân dạng và giải chi tiết các bài toán chuyên đề HH giải tích không gian. Tài liệu gồm các vấn đề: + Vấn đề 1. Mặt phẳng và đường thẳng + Vấn đề 2. Hình chiếu và đối xứng + Vấn đề 3. Khoảng cách và góc + Vấn đề 4. Vị trí tương đối của đường thằng và mặt phẳng + Vấn đề 5. Mặt cầu [ads]
Chuyên đề trắc nghiệm vị trí tương đối, góc và khoảng cách
Tài liệu gồm 34 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề vị trí tương đối, góc và khoảng cách, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. VẤN ĐỀ 1. VỊ TRÍ TƯƠNG ĐỐI. 1. Vị trí tương đối của hai mặt phẳng. 2. Vị trí tương đối của đường thẳng và mặt phẳng. 3. Vị trí tương đối của hai đường thẳng. VẤN ĐỀ 2. BÀI TOÁN VỀ GÓC. 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng. 3. Góc giữa đường thẳng và mặt phẳng. VẤN ĐỀ 3. BÀI TOÁN VỀ KHOẢNG CÁCH. 1. Khoảng cách từ một điểm đến một mặt phẳng. 2. Khoảng cách giữa hai mặt phẳng song song. 3. Khoảng cách từ điểm đến đường thẳng. 4. Khoảng cách giữa hai đường thẳng chéo nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.